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Ruby Mapping for Sequences
On this page:

Mapping Slice Sequences to Ruby Arrays
Mapping for Byte Sequences in Ruby

Mapping Slice Sequences to Ruby Arrays
A Slice  maps to a Ruby array; the only exception is a sequence of bytes, which . The use of a Ruby array means that the sequence maps to a string
mapping does not generate a separate named type for a Slice sequence. It also means that you can take advantage of all the array functionality 
provided by Ruby. For example:

Slice

sequence<Fruit> FruitPlatter;

We can use the  sequence as shown below:FruitPlatter

Ruby

platter = [ Fruit::Apple, Fruit::Pear ]
platter.push(Fruit::Orange)

The Ice run time validates the elements of a sequence to ensure that they are compatible with the declared type; a  exception is raised if TypeError
an incompatible type is encountered.

Mapping for Byte Sequences in Ruby
A Ruby string can contain arbitrary 8-bit binary data, therefore it is a more efficient representation of a byte sequence than a Ruby array in both 
memory utilization and throughput performance.

When receiving a byte sequence (as the result of an operation, as an out parameter, or as a member of a data structure), the value is always 
represented as a string. When sending a byte sequence as an operation parameter or data member, the Ice run time accepts both a string and an 
array of integers as legal values. For example, consider the following Slice definitions:

Slice

// Slice
sequence<byte> Data;

interface I {
    void sendData(Data d);
    Data getData();
};

The interpreter session below uses these Slice definitions to demonstrate the mapping for a sequence of bytes:
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Ruby

> proxy = ...
> proxy.sendData("\0\1\2\3")   # Send as a string
> proxy.sendData([0, 1, 2, 3]) # Send as an array
> d = proxy.getData()
> d.class
=> String
> d
=> "\000\001\002\003"

The two invocations of  are equivalent; however, the second invocation incurs additional overhead as the Ice run time must validate the sendData
type and range of each array element.
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