
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Ruby Mapping for Sequences
On this page:

Mapping Slice Sequences to Ruby Arrays
Mapping for Byte Sequences in Ruby

Mapping Slice Sequences to Ruby Arrays
A Slice maps to a Ruby array; the only exception is a sequence of bytes, which . The use of a Ruby array means that the sequence maps to a string
mapping does not generate a separate named type for a Slice sequence. It also means that you can take advantage of all the array functionality
provided by Ruby. For example:

Slice

sequence<Fruit> FruitPlatter;

We can use the sequence as shown below:FruitPlatter

Ruby

platter = [Fruit::Apple, Fruit::Pear]
platter.push(Fruit::Orange)

The Ice run time validates the elements of a sequence to ensure that they are compatible with the declared type; a exception is raised if TypeError
an incompatible type is encountered.

Mapping for Byte Sequences in Ruby
A Ruby string can contain arbitrary 8-bit binary data, therefore it is a more efficient representation of a byte sequence than a Ruby array in both
memory utilization and throughput performance.

When receiving a byte sequence (as the result of an operation, as an out parameter, or as a member of a data structure), the value is always
represented as a string. When sending a byte sequence as an operation parameter or data member, the Ice run time accepts both a string and an
array of integers as legal values. For example, consider the following Slice definitions:

Slice

// Slice
sequence<byte> Data;

interface I {
 void sendData(Data d);
 Data getData();
};

The interpreter session below uses these Slice definitions to demonstrate the mapping for a sequence of bytes:

https://doc.zeroc.com/display/Ice35/Sequences

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

Ruby

> proxy = ...
> proxy.sendData("\0\1\2\3") # Send as a string
> proxy.sendData([0, 1, 2, 3]) # Send as an array
> d = proxy.getData()
> d.class
=> String
> d
=> "\000\001\002\003"

The two invocations of are equivalent; however, the second invocation incurs additional overhead as the Ice run time must validate the sendData
type and range of each array element.

See Also

Sequences
Ruby Mapping for Identifiers
Ruby Mapping for Modules
Ruby Mapping for Built-In Types
Ruby Mapping for Enumerations
Ruby Mapping for Structures
Ruby Mapping for Dictionaries
Ruby Mapping for Constants
Ruby Mapping for Exceptions
Ruby Mapping for Interfaces
Ruby Mapping for Operations

https://doc.zeroc.com/display/Ice35/Sequences
https://doc.zeroc.com/display/Ice35/Ruby+Mapping+for+Identifiers
https://doc.zeroc.com/display/Ice35/Ruby+Mapping+for+Modules
https://doc.zeroc.com/display/Ice35/Ruby+Mapping+for+Built-In+Types
https://doc.zeroc.com/display/Ice35/Ruby+Mapping+for+Enumerations
https://doc.zeroc.com/display/Ice35/Ruby+Mapping+for+Structures
https://doc.zeroc.com/display/Ice35/Ruby+Mapping+for+Dictionaries
https://doc.zeroc.com/display/Ice35/Ruby+Mapping+for+Constants
https://doc.zeroc.com/display/Ice35/Ruby+Mapping+for+Exceptions
https://doc.zeroc.com/display/Ice35/Ruby+Mapping+for+Interfaces
https://doc.zeroc.com/display/Ice35/Ruby+Mapping+for+Operations

	Ruby Mapping for Sequences

