
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

IceStorm Concepts
This section discusses several concepts that are important for understanding IceStorm's capabilities.

Message
An IceStorm is strongly typed and is represented by an invocation of a Slice operation: the operation name identifies the type of message
the message, and the operation parameters define the message contents. A message is published by invoking the operation on an IceStorm
proxy in the normal fashion. Similarly, subscribers receive the message as a regular servant upcall. As a result, IceStorm uses the "push"
model for message delivery; polling is not supported.

IceStorm Topics
An application indicates its interest in receiving messages by subscribing to a . An IceStorm server supports any number of topics, topic
which are created dynamically and distinguished by unique names. Each topic can have multiple publishers and subscribers.

A topic is essentially equivalent to an application-defined Slice interface: the operations of the interface define the types of messages
supported by the topic. A publisher uses a proxy for the topic interface to send its messages, and a subscriber implements the topic
interface (or an interface derived from the topic interface) in order to receive the messages. This is no different than if the publisher and
subscriber were communicating directly in the traditional client-server style; the interface represents the contract between the client (the
publisher) and the server (the subscriber), except IceStorm transparently forwards each message to multiple recipients.

IceStorm does not verify that publishers and subscribers are using compatible interfaces, therefore applications must ensure that topics are
used correctly.

Unidirectional Messages
IceStorm messages are , that is, they must have return type, cannot have out-parameters, and cannot raise user unidirectional void
exceptions. It follows that a publisher cannot receive replies from its subscribers. Any of the Ice transports (TCP, SSL, and UDP) can be
used to publish and receive messages.

Federation
IceStorm supports the formation of topic graphs, also known as . A topic graph is formed by creating links between topics, where a federation

 is a unidirectional association from one topic to another. Each link has a that may restrict message delivery on that link. A message link cost
published on a topic is also published on all of the topic's links for which the message cost does not exceed the link cost.

Once a message has been published on a link, the receiving topic publishes the message to its subscribers, but does not publish it on any
of its links. In other words, IceStorm messages propagate at most one hop from the originating topic in a federation.

The following figure presents an example of topic federation. Topic T has links to T and T , as indicated by the arrows. The subscribers S 1 2 3 1
and S receive all messages published on T , as well as those published on T . Subscriber S receives messages only from T , and S 2 2 1 3 1 4
receives messages from both T and T . 3 1

 Topic federation.

IceStorm makes no attempt to prevent a subscriber from receiving duplicate messages. For example, if a subscriber is subscribed to both T 2
and T , then it would receive two requests for each message published on T .3 1

Quality of Service
IceStorm allows each subscriber to specify its own (QoS) parameters that affect the delivery of its messages. Quality of quality of service
service parameters are represented as a dictionary of name-value pairs.

Replication
IceStorm supports to provide higher availability for publishers and subscribers.replication

https://doc.zeroc.com/display/Ice35/Oneway+Invocations
https://doc.zeroc.com/display/Ice35/Topic+Federation
https://doc.zeroc.com/display/Ice35/IceStorm+Quality+of+Service
https://doc.zeroc.com/display/Ice35/Highly+Available+IceStorm

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

Persistent Mode
IceStorm's default behavior maintains information about topics, links, and subscribers in a database. However, a message sent via IceStorm
is not stored persistently, but rather is discarded as soon as it is delivered to the topic's current set of subscribers. If an error occurs during
delivery to a subscriber, IceStorm does not queue messages for that subscriber.

Transient Mode
IceStorm can optionally run in a fully transient mode in which no database is required. Replication is not supported in this mode.

Subscriber Errors
IceStorm automatically removes a subscription from a topic if a subscriber failure occurs while attempting to deliver a message. For
example, IceStorm may be unable to establish a connection to the subscriber using the proxy that the subscriber provided, meaning the
subscriber is not currently active at the proxy's endpoints, or those endpoints are inaccessible to IceStorm. Another common failure scenario
is a subscriber that allows an exception to propagate back to IceStorm. This is important if you make changes to a Slice data type or
operation signature: if you do, you must ensure that both publishers and subscribers use the same Slice definitions; if you do not, the
subscriber is likely to encounter marshaling errors when receiving an event from IceStorm with a mismatched Slice definition. If the
subscriber allows this or any other error to propagate back to IceStorm, its subscription will be canceled.

See Also

Oneway Invocations
Topic Federation
IceStorm Quality of Service
Configuring IceStorm
Freeze

Use the parameter to configure IceStorm's behavior in error situations.retryCount quality of service

https://doc.zeroc.com/display/Ice35/Oneway+Invocations
https://doc.zeroc.com/display/Ice35/Topic+Federation
https://doc.zeroc.com/display/Ice35/IceStorm+Quality+of+Service
https://doc.zeroc.com/display/Ice35/Configuring+IceStorm
https://doc.zeroc.com/display/Ice35/Freeze
https://doc.zeroc.com/display/Ice35/IceStorm+Quality+of+Service

	IceStorm Concepts

