
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Using an IceStorm Publisher Object
Each topic creates a publisher object for the express purpose of publishing messages. It is a special object in that it implements an Ice interface that
allows the object to receive and forward requests (i.e., IceStorm messages) without requiring knowledge of the operation types.

On this page:

Type Safety Considerations for the Publisher Object
Publish using Oneway or Twoway Invocations?
Selecting a Transport for the Publisher Object
Using Request Contexts with the Publisher Object

Type Safety Considerations for the Publisher Object
From the publisher's perspective, the publisher object appears to be an application-specific type. In reality, the publisher object can forward requests
for any type, and that introduces a degree of risk: a misbehaving publisher can use to narrow the publisher object to any type and uncheckedCast
invoke any operation; the publisher object unknowingly forwards those requests to the subscribers.

If a publisher sends a request using an incorrect type, the Ice run time in a subscriber typically responds by raising OperationNotExistException
. However, since the subscriber receives its messages as oneway invocations, no response can be sent to the publisher object to indicate this failure,
and therefore neither the publisher nor the subscriber is aware of the type-mismatch problem. In short, IceStorm places the burden on the developer
to ensure that publishers and subscribers are using it correctly.

Publish using Oneway or Twoway Invocations?
IceStorm messages are unidirectional, but publishers may use either oneway or twoway invocations when sending messages to the publisher object.
Each invocation style has advantages and disadvantages that you should consider when deciding which one to use. The differences between the
invocation styles affect a publisher in four ways:

Efficiency
Oneway invocations have the advantage in efficiency because the Ice run time in the publisher does not await a reply to each message
(and, of course, no reply is sent by IceStorm on the wire).

Ordering
The use of oneway invocations by a publisher may affect the order in which subscribers receive messages. If ordering is important, use
twoway invocations with a of , or use a single thread in the subscriber.reliability QoS ordered

Reliability
 under certain circumstances, even when they are sent over a reliable transport such as TCP. If the loss of Oneway invocations can be lost

messages is unacceptable, or you are unable to address the potential causes of lost oneway messages, then twoway invocations are
recommended.

Delays
A publisher may experience network-related delays when sending messages to IceStorm if subscribers are slow in processing messages.
Twoway invocations are more susceptible to these delays than oneway invocations.

Selecting a Transport for the Publisher Object
Each publisher can select its own transport for message delivery, therefore the transport used by a publisher to communicate with IceStorm has no
effect on how IceStorm delivers messages to its subscribers.

For example, a publisher can use a UDP transport if the possibility of lost messages is acceptable (and if IceStorm provides a UDP endpoint to
publishers). However, the TCP or SSL transports are generally recommended for IceStorm's publisher endpoint in order to ensure that published
messages are delivered reliably to IceStorm, even if they may not be delivered reliably to some subscribers.

Using Request Contexts with the Publisher Object
A is an optional argument of all remote invocations. If a publisher supplies a request context when publishing a message, IceStorm request context
will forward it intact to subscribers.

Services such as employ request contexts to provide applications with more control over the service's behavior. For example, if a publisher Glacier2
knows that IceStorm is delivering messages to subscribers via a Glacier2 router, the publisher can influence Glacier2's behavior by including a
request context, as shown in the following C++ example:

https://doc.zeroc.com/display/Ice35/IceStorm+Quality+of+Service#IceStormQualityofService-reliability
https://doc.zeroc.com/display/Ice35/Oneway+Invocations
https://doc.zeroc.com/display/Ice35/Request+Contexts
https://doc.zeroc.com/display/Ice35/How+Glacier2+uses+Request+Contexts

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

C++

 Ice::ObjectPrx pub = topic->getPublisher();
 Ice::Context ctx;
 ctx["_fwd"] = "Oz";
 MonitorPrx monitor = MonitorPrx::uncheckedCast(pub->ice_context(ctx));

The context key, when encountered by Glacier2, causes the router to forward the request using compressed messages. The _fwd batch oneway ice
 is used to obtain a proxy that includes the Glacier2 request context in every invocation, eliminating the need for the _context proxy method

publisher to specify it explicitly.

See Also

IceStorm Quality of Service
Oneway Invocations
Request Contexts
How Glacier2 uses Request Contexts
Batched Invocations
Proxy Methods

https://doc.zeroc.com/display/Ice35/Batched+Invocations
https://doc.zeroc.com/display/Ice35/Proxy+Methods
https://doc.zeroc.com/display/Ice35/IceStorm+Quality+of+Service
https://doc.zeroc.com/display/Ice35/Oneway+Invocations
https://doc.zeroc.com/display/Ice35/Request+Contexts
https://doc.zeroc.com/display/Ice35/How+Glacier2+uses+Request+Contexts
https://doc.zeroc.com/display/Ice35/Batched+Invocations
https://doc.zeroc.com/display/Ice35/Proxy+Methods

	Using an IceStorm Publisher Object

