
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Automatic Database Migration
On this page:

Type Compatibility Rules for Automatic Migration
Default Values for Automatic Migration
Running an Automatic Migration

The default transformations performed by preserve as much information as possible. However, there are practical limits to the tool's transformdb
capabilities, since the only information it has is obtained by performing a comparison of the Slice definitions.

For example, suppose our old definition for a structure is the following:

Slice

struct AStruct {
 int i;
};

We want to migrate instances of this struct to the following revised definition:

Slice

struct AStruct {
 int j;
};

As the developers, we know that the member has been renamed from to , but to it appears that member was removed and int i j transformdb i
member was added. The default transformation results in exactly that behavior: the value of is lost, and is initialized to a default value. If we j i j
need to preserve the value of and transfer it to , then we need to use .i j custom migration

The changes that occur as a type system evolves can be grouped into three categories:

Data members
The data members of class and structure types are added, removed, or renamed. As discussed above, the default transformations initialize
new and renamed data members to .default values

Type names
Types are added, removed, or renamed. New types do not pose a problem for database migration when used to define a new data member;
the member is initialized with as usual. On the other hand, if the new type replaces the type of an existing data member, then default values
type compatibility becomes a factor (see the following item).

Removed types generally do not cause problems either, because any uses of that type must have been removed from the new Slice
definitions (e.g., by removing data members of that type). There is one case, however, where removed types become an issue, and that is
for . polymorphic classes

Renamed types are a concern, just like renamed data members, because of the potential for losing information during migration. This is
another situation for which is recommended.custom migration

Type content
Examples of changes of type content include the key type of a dictionary, the element type of a sequence, or the type of a data member. If
the old and new types are not , then the default transformation emits a warning, discards the current value, and reinitializes it with compatible
a .default value

Type Compatibility Rules for Automatic Migration
Changes in the type of a value are restricted to certain sets of compatible changes. This section describes the type changes supported by the default
transformations. All incompatible type changes result in a warning indicating that the current value is being discarded and a default value for the new
type assigned in its place. Additional flexibility is provided by .custom migration

Boolean

A value of type can be transformed to and from . The legal string values for a value are and .bool string bool "true" "false"

https://doc.zeroc.com/display/Ice35/Custom+Database+Migration
https://doc.zeroc.com/display/Ice35/Using+transformdb#Usingtransformdb-TransformingObjects
https://doc.zeroc.com/display/Ice35/Custom+Database+Migration
https://doc.zeroc.com/display/Ice35/Custom+Database+Migration

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

Integer

The integer types , , , and can be transformed into each other, but only if the current value is within range of the new type. byte short int long
These integer types can also be transformed into .string

Floating Point

The floating-point types and can be transformed into each other, as well as to . No attempt is made to detect a loss of float double string
precision during transformation.

String

A value can be transformed into any of the primitive types, as well as into enumeration and proxy types, but only if the value is a legal string string
representation of the new type. For example, the string value can be transformed into the enumeration , but only if is an "Pear" Fruit Pear
enumerator of .Fruit

Enum

An enumeration can be transformed into an enumeration with the same , or into a string. Transformation between enumerations is performed type ID
symbolically. For example, consider our old type below:

Slice

enum Fruit { Apple, Orange, Pear };

Suppose the enumerator is being transformed into the following new type:Pear

Slice

enum Fruit { Apple, Pear };

The transformed value in the new enumeration is also , despite the fact that has changed positions in the new type. However, if the old Pear Pear
value had been , then the default transformation emits a warning because that enumerator no longer exists, and initializes the new value to Orange Ap

 (the default value).ple

If an enumerator has been renamed, then is required to convert enumerators from the old name to the new one.custom migration

Sequence

A sequence can be transformed into another sequence type, even if the new sequence type does not have the same type id as the old type, but only
if the element types are compatible. For example, can be transformed into , regardless of the names given to sequence<short> sequence<int>
the sequence types.

Dictionary

A dictionary can be transformed into another dictionary type, even if the new dictionary type does not have the same as the old type, but only type ID
if the key and value types are compatible. For example, can be transformed into , dictionary<int, string> dictionary<long, string>
regardless of the names given to the dictionary types.

Caution is required when changing the key type of a dictionary, because the default transformation of keys could result in duplication. For example, if
the key type changes from to , any value outside the range of results in the key being initialized to a default value (namely int short int short
zero). If zero is already used as a key in the dictionary, or another out-of-range key is encountered, then a duplication occurs. The transformation
handles key duplication by removing the duplicate element from the transformed dictionary. (Custom migration can be useful in these situations if the
default behavior is not acceptable.)

Structure

A type can only be transformed into another type with the same . Data members are transformed as appropriate for their struct struct type ID
types.

Proxy

https://doc.zeroc.com/display/Ice35/Type+IDs
https://doc.zeroc.com/display/Ice35/Custom+Database+Migration
https://doc.zeroc.com/display/Ice35/Type+IDs
https://doc.zeroc.com/display/Ice35/Type+IDs

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

A proxy value can be transformed into another proxy type, or into . Transformation into another proxy type is done with the same semantics string
as in a language mapping: if the new type does not match the old type, then the new type must be a base type of the old type (that is, the proxy is
widened).

Class

A type can only be transformed into another type with the same . A data member of a type is allowed to be widened to a class class type ID class
base type. Data members are transformed as appropriate for their types. See for more information on transforming classes.Transforming Objects

Default Values for Automatic Migration
Data types are initialized with default values, as shown.

Type Default Value

Boolean false

Numeric Zero ()0

String Empty string

Enumeratio
n

The first enumerator

Sequence Empty sequence

Dictionary Empty dictionary

Struct Data members are initialized
recursively

Proxy Nil

Class Nil

Running an Automatic Migration
In order to use automatic transformation, we need to supply the following information to :transformdb

The old and new Slice definitions
The old and new types for the database key and value
The database environment directory, the database file name, and the name of a new database environment directory to hold the
transformed database

Here is an example of a command:transformdb

$ transformdb --old old/MyApp.ice --new new/MyApp.ice \
--key int,string --value ::Employee db emp.db newdb

Briefly, the and options specify the old and new Slice definitions, respectively. These options can be specified as many times as --old --new
necessary in order to load all of the relevant definitions. The option indicates that the database key is evolving from to . The --key int string --

 option specifies that is used as the database value type in both old and new type definitions, and therefore only needs to be value ::Employee
specified once. Finally, we provide the pathname of the database environment directory (), the file name of the database (), and the db emp.db
pathname of the database environment directory for the transformed database ().newdb

See Also

Custom Database Migration
Type IDs
Using transformdb

https://doc.zeroc.com/display/Ice35/Type+IDs
https://doc.zeroc.com/display/Ice35/Using+transformdb#Usingtransformdb-TransformingObjects
https://doc.zeroc.com/display/Ice35/Using+transformdb
https://doc.zeroc.com/display/Ice35/Custom+Database+Migration
https://doc.zeroc.com/display/Ice35/Type+IDs
https://doc.zeroc.com/display/Ice35/Using+transformdb

	Automatic Database Migration

