
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Using transformdb
On this page:

Execution Modes for transformdb
Using Database Catalogs during Transformation
Slice Options for transformdb
Type Options for transformdb
General Options for transformdb
Database Arguments for transformdb
Performing an Automatic Migration

Migrating a Single Database
Migrating All Databases

Performing a Migration Analysis
Generated File
Invocation Modes

Performing a Custom Migration
transformdb Usage Strategies
Transforming Objects
Using transformdb on an Open Environment

Execution Modes for transformdb
The tool operates in one of three modes:

Automatic migration
Custom migration
Analysis

The only difference between and migration modes is the source of the transformation descriptors: for automatic migration, automatic custom transfo
 internally generates and executes a default set of descriptors, whereas for custom migration the user specifies an external file containing the rmdb

transformation descriptors to be executed.

In analysis mode, creates a file containing the default transformation descriptors it would have used during automatic migration. You transformdb
would normally review this file and possibly customize it prior to executing the tool again in its custom migration mode.

Using Database Catalogs during Transformation
Freeze maintains schema information in a for each database environment. If necessary, will use the catalog to determine the catalog transformdb
names of the databases in the environment, and to determine the key and value types of a particular database. There are two advantages to the
tool's use of the catalog:

Allows to operate on all of the databases in a single invocationtransformdb
Eliminates the need for you to specify type information for a database.

For example, you can use automatic migration to transform all of the databases at one time, as shown below:

$ transformdb [options] old-env new-env

Since we omitted the name of a database to be migrated, uses the catalog in the environment to discover all of the transformdb old-env
databases and their types, generates default transformations for each database, and performs the migration. However, we must still ensure that tran

 has loaded the old and new Slice types used by of the databases in the environment.sformdb all

Slice Options for transformdb
The tool supports the common to all Slice processors, with the exception of the include directory () option. The standard command-line options -I
options specific to are described below:transformdb

--old SLICE
--new SLICE
Loads the old or new Slice definitions contained in the file . These options may be specified multiple times if several files must be SLICE
loaded. However, it is the user's responsibility to ensure that duplicate definitions do not occur (which is possible when two files are loaded
that share a common include file). One strategy for avoiding duplicate definitions is to load a single Slice file that contains only #include
statements for each of the Slice files to be loaded. No duplication is possible in this case if the included files use include guards correctly.

https://doc.zeroc.com/display/Ice35/Automatic+Database+Migration
https://doc.zeroc.com/display/Ice35/Custom+Database+Migration
https://doc.zeroc.com/display/Ice35/Freeze+Catalogs
https://doc.zeroc.com/display/Ice35/Using+the+Slice+Compilers

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

--include-old DIR
--include-new DIR
Adds the directory to the set of include paths for the old or new Slice definitions.DIR

Type Options for transformdb
In invocation modes for which requires that you define the types used by a database, you must specify one of the following options:transformdb

--key [,]TYPE TYPE
--value [,]TYPE TYPE
Specifies the Slice type(s) of the database key and value. If the type does not change, then the type only needs to be specified once.
Otherwise, the old type is specified first, followed by a comma and the new type. For example, the option indicates --key int,string
that the database key is migrating from to . On the other hand, the option indicates that the key type does not int string --key int,int
change, and could be given simply as . Type changes are restricted to those allowed by the , but custom --key int compatibility rules
migration provides additional flexibility.

-e
Indicates that a database is being migrated. As a convenience, this option automatically sets the database key and value Freeze evictor
types to those appropriate for the Freeze evictor, and therefore the and options are not necessary. Specifically, the key --key --value
type of a Freeze evictor database is , and the value type is . The latter is defined in the Slice file Ice::Identity Freeze::ObjectRecord

; however, this file does not need to be loaded into your old and new Slice definitions.Freeze/EvictorStorage.ice

General Options for transformdb
These options may be specified during analysis or migration, as indicated below:

-i
Requests that ignore type changes that violate the . If this option is not specified, fails transformdb compatibility rules transformdb
immediately if such a violation occurs. With this option, a warning is displayed but continues the requested action. The transformdb -i
option can be specified in analysis or automatic migration modes.

-p
During migration, this option requests that whose type is no longer found in the new Slice definitions.transformdb purge object instances

-c
Use catastrophic recovery on the old Berkeley DB database environment prior to migration.

-w
Suppress duplicate warnings during migration. This option is especially useful to minimize diagnostic messages when would transformdb
otherwise emit the same warning many times, such as when it detects the same issue in every record of a database.

Database Arguments for transformdb
In addition to the options described above, accepts as many as three arguments that specify the names of databases and database transformdb
environments:

dbenv
The pathname of the old database environment directory.

db
The name of an existing database file in . never modifies this database.dbenv transformdb

newdbenv
The pathname of the database environment directory to contain the transformed database(s). This directory must exist and must not contain
an existing database whose name matches a database being migrated.

Performing an Automatic Migration
You can use to automatically migrate one database or all databases in an environment.transformdb

Migrating a Single Database

Use the following command line to migrate one database:

https://doc.zeroc.com/display/Ice35/Automatic+Database+Migration#AutomaticDatabaseMigration-TypeCompatibilityRulesforAutomaticMigration
https://doc.zeroc.com/display/Ice35/Freeze+Evictors
https://doc.zeroc.com/display/Ice35/Automatic+Database+Migration#AutomaticDatabaseMigration-TypeCompatibilityRulesforAutomaticMigration

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

$ transformdb [slice-opts] [type-opts] [gen-opts] dbenv db newdbenv

If you omit , the tool obtains type information for database from the . For example, consider the following command, which type-opts db catalog
uses automatic migration to transform a database with a key type of and value type of into a database with the same key type and a int string
value type of :long

$ transformdb --key int --value string,long dbhome data.db newdbhome

Note that we did not need to specify the Slice options or because our key and value types are primitives. Upon successful completion, --old --new
the file contains our transformed database.newdbhome/data.db

Migrating All Databases

To migrate all databases in the environment, use a command like the one shown below:

$ transformdb [slice-opts] [gen-opts] dbenv newdbenv

In this invocation mode, you must ensure that has loaded the old and new Slice definitions for all of the types it will encounter among transformdb
the databases in the environment.

Performing a Migration Analysis
Custom migration is a two-step process: you first write the transformation descriptors, and then execute them to transform a database. To assist you
in the process of creating a descriptor file, can generate a default set of transformation descriptors by comparing your old and new transformdb
Slice definitions. This feature is enabled by specifying the following option:

-o FILE
Specifies the descriptor file to be created during analysis. No migration occurs in this invocation mode.FILE

Generated File

The generated file contains a descriptor for each type that appears in both old and new Slice definitions, and an descriptor <transform> <init>
for types that appear only in the new Slice definitions. In most cases, these descriptors are empty. However, they can contain XML comments
describing changes detected by that may require action on your part.transformdb

For example, let us revisit the enumeration we defined in our discussion of :custom database migration

Slice

enum BigThree { Ford, DaimlerChrysler, GeneralMotors };

This enumeration has evolved into the one shown below. In particular, the enumerator has been renamed to reflect a corporate DaimlerChrysler
name change:

Slice

enum BigThree { Ford, Daimler, GeneralMotors };

Next we run in analysis mode:transformdb

$ transformdb --old old/BigThree.ice --new new/BigThree.ice --key string \
--value ::BigThree -o transform.xml

The generated file contains the following descriptor for the enumeration :transform.xml BigThree

https://doc.zeroc.com/display/Ice35/Custom+Database+Migration

Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

XML

<transform type="::BigThree">
 <!-- NOTICE: enumerator `DaimlerChrysler' has been removed -->
</transform>

The comment indicates that enumerator is no longer present in the new definition, reminding us that we need to add logic in this DaimlerChrysler
 descriptor to change all occurrences of to .<transform> DaimlerChrysler Daimler

The descriptor file generated by is well-formed and does not require any manual intervention prior to being executed. However, transformdb
executing an unmodified descriptor file is simply the equivalent of using automatic migration.

Invocation Modes

The sample command line shown in the previous section specified the key and value types of the database explicitly. This invocation mode has the
following general form:

$ transformdb [slice-opts] [type-opts] [gen-opts] -o FILE

Upon successful completion, the generated file contains a descriptor that records the type information supplied by , in <database> type-opts
addition to the and descriptors described earlier.<transform> <init>

For your convenience, you can omit and allow to obtain type information from the catalog instead:type-opts transformdb

$ transformdb [slice-opts] [gen-opts] -o FILE dbenv

In this case, the generated file contains a descriptor for each database in the catalog. Note that in this invocation mode, <database> transformdb
must assume that the names of the database key and value types have not changed, since the only type information available is the catalog in the
old database environment. If the tool is unable to locate a new Slice definition for a database's key or value type, it emits a warning message and
generates a placeholder value in the output file that you must modify prior to migration.

Performing a Custom Migration
After preparing a descriptor file, either by writing one completely yourself, or modifying one generated by the analysis mode described in the previous
section, you are ready to migrate a database. One additional option is provided for migration:

-f FILE
Execute the transformation descriptors in the file .FILE

To transform one database, use the following command:

$ transformdb [slice-opts] [gen-opts] -f FILE dbenv db newdbenv

The tool searches the descriptor file for a descriptor whose attribute matches . If no match is found, it searches for a <database> name db <databas
 descriptor that does not have a attribute.e> name

If you want to transform all databases in the environment, you can omit the database name:

$ transformdb [slice-opts] [gen-opts] -f FILE dbenv newdbenv

In this case, the descriptor file must contain a element for each database in the environment.<database>

Continuing our enumeration example from the analysis discussion above, assume we have modified to convert the transform.xml Chrysler
enumerator, and are now ready to execute the transformation:

$ transformdb --old old/BigThree.ice --new new/BigThree.ice -f transform.xml \
dbhome bigthree.db newdbhome

Ice 3.5.1 Documentation

5 Copyright © 2017, ZeroC, Inc.

transformdb Usage Strategies
If it becomes necessary for you to transform a Freeze database, we generally recommend that you attempt to use automatic migration first, unless
you already know that custom migration is necessary. Since transformation is a non-destructive process, there is no harm in attempting an automatic
migration, and it is a good way to perform a sanity check on your arguments (for example, to ensure that all the necessary Slice files transformdb
are being loaded), as well as on the database itself. If detects any incompatible type changes, it displays an error message for each transformdb
incompatible change and terminates without doing any transformation. In this case, you may want to run again with the option, transformdb -i
which ignores incompatible changes and causes transformation to proceed.

Pay careful attention to any warnings that emits, as these may indicate the need for using custom migration. For example, if we had transformdb
attempted to transform the database containing the enumeration from previous sections using automatic migration, any occurrences of BigThree
the enumerator would display the following warning:Chrysler

warning: unable to convert 'Chrysler' to ::BigThree

If custom migration appears to be necessary, use analysis to generate a default descriptor file, then review it for comments and edit as NOTICE
necessary. Liberal use of the descriptor can be beneficial when testing your descriptor file, especially from within the descriptor <echo> <record>
where you can display old and new keys and values.

Transforming Objects
The polymorphic nature of Slice classes can cause problems for database migration. As an example, the Slice parser can ensure that a set of Slice
definitions loaded into is complete for all types but classes (and exceptions, but we ignore those because they are not persistent). transformdb tra

 cannot know that a database may contain instances of a subclass that is derived from one of the loaded classes but whose definition is nsformdb
not loaded. Alternatively, the type of a class instance may have been renamed and cannot be found in the new Slice definitions.

By default, these situations result in immediate transformation failure. However, the option is a (potentially drastic) way to handle these situations: -p
if a class instance has no equivalent in the new Slice definitions and this option is specified, removes the instance any way it can. If transformdb
the instance appears in a sequence or dictionary element, that element is removed. Otherwise, the database record containing the instance is
deleted.

Now, the case of a class type being renamed is handled easily enough using custom migration and the attribute of the rename <transform>
descriptor. However, there are legitimate cases where the destructive nature of the option can be useful. For example, if a class type has been -p
removed and it is simply easier to start with a database that is guaranteed not to contain any instances of that type, then the option may simplify -p
the broader migration effort.

This is another situation in which running an automatic migration first can help point out the trouble spots in a potential migration. Using the option, -p
 emits a warning about the missing class type and continues, rather than halting at the first occurrence, enabling you to discover transformdb

whether you have forgotten to load some Slice definitions, or need to rename a type.

Using on an Open Environmenttransformdb
It is possible to use to migrate databases in an environment that is currently open by another process, but if you are not careful you transformdb
can easily corrupt the environment and cause the other process to fail. To avoid such problems, you must configure both and the transformdb
other process to set . This property has a default value of one, therefore you must explicitly set it to zero. Freeze.DbEnv. .DbPrivate=0env-name
Note that makes no changes to the existing database environment, but it requires exclusive access to the new database environment transformdb
until transformation is complete.

If you run on an open environment but neglect to set , you can expect to transformdb Freeze.DbEnv. .DbPrivate=0env-name transformdb
terminate immediately with an error message stating that the database environment is locked. Before running on an open transformdb
environment, we strongly recommend that you first verify that the other process was also configured with .Freeze.DbEnv. .DbPrivate=0env-name

See Also

Automatic Database Migration
Custom Database Migration
Using the Slice Compilers
Freeze Catalogs
Freeze Evictors
Freeze Properties

https://doc.zeroc.com/display/Ice35/Freeze+Properties#FreezeProperties-Freeze.DbEnv.env-name.DbPrivate
https://doc.zeroc.com/display/Ice35/Automatic+Database+Migration
https://doc.zeroc.com/display/Ice35/Custom+Database+Migration
https://doc.zeroc.com/display/Ice35/Using+the+Slice+Compilers
https://doc.zeroc.com/display/Ice35/Freeze+Catalogs
https://doc.zeroc.com/display/Ice35/Freeze+Evictors
https://doc.zeroc.com/display/Ice35/Freeze+Properties

	Using transformdb

