
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Versioning with Facets
We described several ways that a user might try to solve . A negative aspect of all these approaches is that they change the the versioning problem
type system in intrusive ways. In turn, this forces unacceptable programming contortions on clients. Facets allow you to solve the versioning problem
more elegantly because they do not change an existing type system but extend it instead. We saw this approach , where we added date once already
information about a file to our file system application without disturbing any of the existing definitions.

In the most general sense, facets provide a mechanism for implementing multiple interfaces for a single object. The key point is that, to add a new
interface to an object, none of the existing definitions have to be touched, so no compatibility issues can arise. More importantly, the decision as to
which facet to use is made at run time instead of at compile time. In effect, facets implement a form of late binding and, therefore, are coupled to the
type system more loosely than any of the previous approaches.

Used judiciously, facets can handle versioning requirements more elegantly than other mechanisms. Apart from the straight extension of an interface
as shown , facets can also be used for more complex changes. For example, if you need to change the parameters of an operation or modify earlier
the fields of a structure, you can create a new facet with operations that operate on the changed data types. Quite often, the implementation of a
version 2 facet in the server can even re-use much of the version 1 functionality, by delegating some version 2 operations to a version 1
implementation.

On this page:

Facet Selection
Behavioral Versioning
Facets Design Considerations

Facet Selection
Given that we have decided to extend an application with facets, we have to deal with the question of how clients select the correct facet. The answer
typically involves an explicit selection of a facet sometime during client start-up. For example, in our file system application, clients always begin their
interactions with the file system by creating a proxy to the root directory. Let us assume that our versioning requirements have led to version 1 and
version 2 definitions of directories as follows:

Slice

module Filesystem { // Original version
 // ...

 interface Directory extends Node {
 idempotent NodeSeq list();
 // ...
 };
};

module FilesystemV2 {
 // ...

 enum NodeType { Directory, File };

 class NodeDetails {
 NodeType type;
 string name;
 DateTime createdTime;
 DateTime accessedTime;
 DateTime modifiedTime;
 // ...
 };

 interface Directory extends Filesystem::Node {
 idempotent NodeDetailsSeq list();
 // ...
 };
};

In this case, the semantics of the operation have changed in version 2. A version 1 client uses the following code to obtain a proxy to the root list
directory:

https://doc.zeroc.com/display/Ice35/The+Versioning+Problem
https://doc.zeroc.com/display/Ice35/Facet+Concepts#FacetConcepts-server
https://doc.zeroc.com/display/Ice35/Facet+Concepts#FacetConcepts-server

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

C++

// Create a proxy for the root directory
//
Ice::ObjectPrx base = communicator()->stringToProxy("RootDir:default -p 10000");
if (!base)
 throw "Could not create proxy";

// Down-cast the proxy to a Directory proxy
//
Filesystem::DirectoryPrx rootDir = Filesystem::DirectoryPrx::checkedCast(base);
if (!rootDir)
 throw "Invalid proxy";

For a version 2 client, the bootstrap code is almost identical — instead of down-casting to , the client selects the "V2" Filesystem::Directory
facet during the down-cast to the type :FilesystemV2::Directory

C++

// Create a proxy for the root directory
//
Ice::ObjectPrx base = communicator()->stringToProxy("RootDir:default -p 10000");
if (!base)
 throw "Could not create proxy";

// Down-cast the proxy to a V2 Directory proxy
//
FilesystemV2::DirectoryPrx rootDir = FilesystemV2::DirectoryPrx::checkedCast(base, "V2");
if (!rootDir)
 throw "Invalid proxy";

Of course, we can also create a client that can deal with both version 1 and version 2 directories: if the down-cast to version 2 fails, the client is
dealing with a version 1 server and can adjust its behavior accordingly.

Behavioral Versioning
On occasion, versioning requires changes in behavior that are not manifest in the interface of the system. For example, we may have an operation
that performs some work, such as:

Slice

interface Foo {
 void doSomething();
};

The same operation on the same interface exists in both versions, but the of in version 2 differs from that in version 1. The behavior doSomething
question is, how do we best deal with such behavioral changes?

Of course, one option is to simply create a version 2 facet and to carry that facet alongside the original version 1 facet. For example:

Slice

module V2 {

 interface Foo { // V2 facet
 void doSomething();
 };
};

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

This works fine, as far as it goes: a version 2 client asks for the "V2" facet and then calls to get the desired effect. Depending on your doSomething
circumstances, this approach may be entirely reasonable. However, if there are such behavioral changes on several interfaces, the approach leads
to a more complex type system because it duplicates each interface with such a change.

A better alternative can be to create two facets of the same type, but have the implementation of those facets differ. With this approach, both facets
are of type . However, the implementation of checks which facet was used to invoke the request and adjusts ::Foo::doSomething doSomething
its behavior accordingly:

C++

void
FooI::doSomething(const Ice::Current& c)
{
 if (c.facet == "V2") {
 // Provide version 2 behavior...
 } else {
 // Provide version 1 behavior...
 }
}

This approach avoids creating separate types for the different behaviors, but has the disadvantage that version 1 and version 2 objects are no longer
distinguishable to the type system. This can matter if, for example, an operation accepts a proxy as a parameter. Let us assume that we also Foo
have an interface as follows:FooProcessor

Slice

interface FooProcessor {
 void processFoo(Foo* w);
};

If also exists as a version 1 and version 2 facet, we must deal with the question of what should happen if a version 1 proxy is FooProcessor Foo
passed to a version 2 operation because, at the type level, there is nothing to prevent this from happening.processFoo

You have two options for dealing with this situation:

Define working semantics for mixed-version invocations. In this case, you must come up with sensible system behavior for all possible
combinations of versions.
If some of the combinations are disallowed (such as passing a version 1 proxy to a version 2 operation), you can detect Foo processFoo
the version mismatch in the server by looking at the member and throwing an exception to indicate a version mismatch. Current::facet
Simultaneously, write your clients to ensure they only pass a permissible version to . Clients can ensure this by checking the processFoo
facet name of a proxy before passing it to and, if there is a version mismatch, changing either the proxy or the processFoo Foo FooProce

 proxy to a matching facet:ssor

https://doc.zeroc.com/display/Ice35/The+Current+Object

Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

C++

FooPrx foo = ...; // Get a Foo...
FooProcessorPrx fooP = ...; // Get a FooProcessor...

string fooFacet = foo->ice_getFacet();
string fooPFacet = fooP->ice_getFacet();
if (fooFacet != fooPFacet) {
 if (fooPFacet == "V2") {
 error("Cannot pass a V1 Foo to a V2 FooProcessor");
 } else {
 // Upgrade FooProcessor from V1 to V2
 fooP = FooProcessorPrx::checkedCast(fooP, "V2");
 if (!fooP) {
 error("FooProcessor does not have a V2 facet");
 } else {
 fooP->processFoo(foo);
 }
 }
}

Facets Design Considerations
Facets allow you to add versioning to a system, but they are merely a mechanism, not a solution. You still have to make a decision as to how to
version something. For example, eventually you may want to deprecate a previous version's behavior; at that point, you must make a decision how to
handle requests for the deprecated version. For behavioral changes, you have to decide whether to use separate interfaces or use facets with the
same interface. And, of course, you must have compatibility rules to determine what should happen if, for example, a version 1 object is passed to an
operation that implements version 2 behavior. In other words, facets cannot do your thinking for you and are no panacea for the versioning problem.

The biggest advantage of facets is also the biggest drawback: facets delay the decision about the types that are used and their behavior until run
time. While this provides a lot of flexibility, it is significantly less type-safe than having explicit types that can be statically checked at compile time: if
you have a problem relating to incorrect facet selection, the problem will be visible only at run time and, moreover, will be visible only if you actually
execute the code that contains the problem, and execute it with just the right data.

Another danger of facets is the opportunity for abuse. As an extreme example, here is an interface that provides an arbitrary collection of objects of
arbitrary type:

Slice

interface Collection {};

Even though this interface is empty, it can provide access to an unlimited number of objects of arbitrary type in the form of facets. While this example
is extreme, it illustrates the design tension that is created by facets: you must decide, for a given versioning problem, how and at what point of the
type hierarchy to split off a facet that deals with the changed functionality. The temptation may be to "simply add another facet" and be done with it.
However, if you do that, your objects are in danger of being nothing more than loose conglomerates of facets without rhyme or reason, and with little
visibility of their relationships in the type system.

In object modeling terms, the relationship among facets is weaker than an relationship (because facets are often not type-compatible among is-a
each other). On the other hand, the relationship among facets is stronger than a relationship (because all facets of an Ice object share the has-a
same).object identity

It is probably best to treat the relationship of a facet to its Ice object with the same respect as an inheritance relationship: if you were omniscient and
could have designed your system for all current and future versions simultaneously, many of the operations that end up on separate facets would
probably have been in the same interface instead. In other words, adding a facet to an Ice object most often implies that the facet has an is-partly-a
relationship with its Ice object. In particular, if you think about the life cycle of an Ice object and find that, when an Ice object is deleted, all its facets
must be deleted, this is a strong indication of a correct design. On the other hand, if you find that, at various times during an Ice object's life cycle, it
has a varying number of facets of varying types, that is a good indication that you are using facets incorrectly.

Ultimately, the decision comes down to deciding whether the trade-off of static type safety versus dynamic type safety is worth the convenience and
backward compatibility. The answer depends strongly on the design of your system and individual requirements, so we can only give broad advice
here. Finally, there will be a point where no amount of facet trickery will get past the point when "yet one more version will be the straw that breaks
the camel's back." At that point, it is time to stop supporting older versions and to redesign the system.

See Also

https://doc.zeroc.com/display/Ice35/Object+Identity

Ice 3.5.1 Documentation

5 Copyright © 2017, ZeroC, Inc.

Facet Concepts
The Versioning Problem
The Current Object
Object Identity

https://doc.zeroc.com/display/Ice35/Facet+Concepts
https://doc.zeroc.com/display/Ice35/The+Versioning+Problem
https://doc.zeroc.com/display/Ice35/The+Current+Object
https://doc.zeroc.com/display/Ice35/Object+Identity

	Versioning with Facets

