
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Freeze Map Concepts
On this page:

Freeze Connections
Using Transactions with Freeze Maps

Using Transactions with C++
Using Transactions with Java

Iterating a Freeze Map
Recovering from Freeze Map Deadlocks
Key Sorting for Freeze Maps

Key Sorting for Freeze Maps in C++
Key Sorting for Freeze Maps in Java

Indexing a Freeze Map

Freeze Connections
In order to create a Freeze map object, you first need to obtain a Freeze object by connecting to a database environment.Connection

As illustrated in the following figure, a Freeze map is associated with a single connection and a single database file. Connection and map objects are
not thread-safe: if you want to use a connection or any of its associated maps from multiple threads, you must serialize access to them. If your
application requires concurrent access to the same database file (persistent map), you must create several connections and associated maps.

Freeze connections and maps.

Freeze connections provide operations that allow you to begin a transaction, access the current transaction, get the communicator associated with a
connection, close a connection, and remove a map index. See the for more information on these operations.Slice API reference

Using Transactions with Freeze Maps
You may optionally use transactions with Freeze maps. Freeze transactions provide the usual ACID (atomicity, concurrency, isolation, durability)
properties. For example, a transaction allows you to group several database updates in one atomic unit: either all or none of the updates within the
transaction occur.

You start a transaction by calling on the object. Once a connection has an associated transaction, all operations beginTransaction Connection
on the map objects associated with this connection use this transaction. Eventually, you end the transaction by calling or : commit rollback commit
saves all your updates while undoes them. The operation returns the transaction associated with a connection, if rollback currentTransaction
any; otherwise, it returns nil.

http://www.zeroc.com/doc/3.4.2/reference

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

Slice

module Freeze {

local interface Transaction {
 void commit();
 void rollback();
};

local interface Connection {
 Transaction beginTransaction();
 idempotent Transaction currentTransaction();
 // ...
};
};

If you do not use transactions, every non-iterator update is enclosed in its own internal transaction, and every read-write iterator has an associated
internal transaction that is committed when the iterator is closed.

Using Transactions with C++

You must ensure that you either commit or roll back each transaction that you begin (otherwise, locks will be held by the database until they time out):

C++

ConnectionPtr connection = ...;

TransactionPtr tx = connection->beginTransaction();
try {

 // DB updates that might throw here...

 tx->commit();

 // More code that might throw here...

} catch (...) {
 try {
 tx->rollback();
 } catch (...) {
 }
 throw;
}

The outer try-catch blocks are necessary because, if the code encounters an exception, we must roll back any updates that were made. In turn, the
attempt to roll back might throw itself, namely, if the code following the commit throws an exception (in which case the transaction cannot be rolled
back because it is already committed).

Code such as this is difficult to maintain: for example, an early return statement can cause the transaction to be neither committed nor rolled back.
The class ensures that such errors cannot happen:TransactionHolder

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

C++

namespace Freeze {
 class TransactionHolder {
 public:
 TransactionHolder(const ConnectionPtr&);
 ~TransactionHolder();

 void commit();
 void rollback();

 private:
 // Copy and assignment are forbidden.
 TransactionHolder(const TransactionHolder&);
 TransactionHolder& operator=(const TransactionHolder&);
 };
}

The constructor calls if the connection does not already have a transaction in progress, so instantiating the holder also starts a beginTransaction
transaction. When the holder instance goes out of scope, its destructor calls on the transaction and suppresses any exceptions that the rollback
rollback attempt might throw. This ensures that the transaction is rolled back if it was not previously committed or rolled back and ensures that an
early return or an exception cannot cause the transaction to remain open:

C++

ConnectionPtr connection = ...;

{ // Open scope

 TransactionHolder tx(connection); // Begins transaction

 // DB updates that might throw here...

 tx.commit();

 // More code that might throw here...

} // Transaction rolled back here if not previously
 // committed or rolled back.

If you instantiate a when a transaction is already in progress, it does nothing: the constructor notices that it could not begin a TransactionHolder
new transaction and turns , , and the destructor into no-ops. For example, the nested instance in the commit rollback TransactionHolder
following code is benign and does nothing:

Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

C++

ConnectionPtr connection = ...;

{ // Open scope

 TransactionHolder tx(connection); // Begins transaction

 // DB updates that might throw here...

 { // Open nested scope

 TransactionHolder tx2(connection); // Does nothing

 // DB updates that might throw here...

 tx2.commit(); // Does nothing

 // More code that might throw here...

 } // Destructor of tx2 does nothing

 tx.commit();

 // More code that might throw here...

} // Transaction rolled back here if not previously
 // committed or rolled back.

Using Transactions with Java

You must ensure that you either commit or roll back each transaction that you begin (otherwise, locks will be held by the database until they time out):

Java

Connection connection = ...;

Transaction tx = connection.beginTransaction();
try {

 // DB updates that might throw here...

 tx.commit();

 // More code that might throw here...

} catch (java.lang.RuntimeException ex) {
 try {
 tx.rollback();
 } catch (DatabaseException e) {
 }
 throw ex;
}

The catch handler ensures that the transaction is rolled back before re-throwing the exception. Note that the nested try-catch blocks are necessary: if
the transaction committed successfully but the code following the commit throws an exception, the rollback attempt will fail therefore we need to
suppress the corresponding that is raised in that case.DatabaseException

Also use caution with early statements:return

Ice 3.5.1 Documentation

5 Copyright © 2017, ZeroC, Inc.

Java

Connection connection = ...;

Transaction tx = connection.beginTransaction();
try {

 // DB updates that might throw here...

 if (error) {
 // ...
 return; // Oops, bad news!
 }

 // ...

 tx.commit();

 // More code that might throw here...

} catch (java.lang.RuntimeException ex) {
 try {
 tx.rollback();
 } catch (DatabaseException e) {
 }
 throw ex;
}

The early statement in the preceding code causes the transaction to be neither committed nor rolled back. To deal with this situation, avoid return
early return statements or ensure that you either commit or roll back the transaction before returning. Alternatively, you can use a block to finally
ensure that the transaction is rolled back:

Java

Connection connection = ...;

try {

 Transaction tx = connection.beginTransaction();

 // DB updates that might throw here...

 if (error) {
 // ...
 return; // No problem, see finally block.
 }

 // ...

 tx.commit();

 // More code that might throw here...

} finally {
 if (connection.currentTransaction() != null)
 connection.currentTransaction().rollback();
}

Iterating a Freeze Map

Ice 3.5.1 Documentation

6 Copyright © 2017, ZeroC, Inc.

Iterators allow you to traverse the contents of a Freeze map. Iterators are implemented using Berkeley DB cursors and acquire locks on the
underlying database page files. In C++, both read-only () and read-write iterators () are available. In Java, an iterator is const_iterator iterator
read-write if it is obtained in the context of a transaction and read-only if it is obtained outside a transaction.

Locks held by an iterator are released when the iterator is closed (if you do not use transactions) or when the enclosing transaction ends. Releasing
locks held by iterators is very important to let other threads access the database file through other connection and map objects. Occasionally, it is
even necessary to release locks to avoid self-deadlock (waiting forever for a lock held by an iterator created by the same thread).

To improve ease of use and make self-deadlocks less likely, Freeze often closes iterators automatically. If you close a map or connection, associated
iterators are closed. Similarly, when you start or end a transaction, Freeze closes all the iterators associated with the corresponding maps. If you do
not use transactions, any write operation on a map (such as inserting a new element) automatically closes all iterators opened on the same map
object, except for the current iterator when the write operation is performed through that iterator. In Java, Freeze also closes a read-only iterator when
no more elements are available.

There is, however, one situation in C++ where an explicit iterator close is needed to avoid self-deadlock:

you do not use transactions, and
you have an open iterator that was used to update a map (it holds a write lock), and
in the same thread, you read that map.

Read operations in C++ never close iterators automatically: you need to either use transactions or explicitly close the iterator that holds the write lock.
This is not an issue in Java because you cannot use an iterator to update a map outside of a transaction.

Recovering from Freeze Map Deadlocks
If you use multiple threads to access a database file, Berkeley DB may acquire locks in conflicting orders (on behalf of different transactions or
iterators). For example, an iterator could have a read-lock on page P1 and attempt to acquire a write-lock on page P2, while another iterator (on a
different map object associated with the same database file) could have a read-lock on P2 and attempt to acquire a write-lock on P1.

When this occurs, Berkeley DB detects a deadlock and resolves it by returning a "deadlock" error to one or more threads. For all non-iterator
operations performed outside any transaction, such as an insertion into a map, Freeze catches such errors and automatically retries the operation
until it succeeds. (In that case, the most-recently acquired lock is released before retrying.) For other operations, Freeze reports this deadlock by
raising . In that case, the associated transaction or iterator is also automatically rolled back or closed. A properly Freeze::DeadlockException
written application must expect to catch deadlock exceptions and retry the transaction or iteration.

Key Sorting for Freeze Maps
Keys in Freeze maps and indexes are always sorted. By default, Freeze sorts keys according to their Ice-encoded binary representation; this is very
efficient but the resulting order is rarely meaningful for the application. Starting with Ice 3.0, Freeze offers the ability to specify your own comparator
objects so that you can customize the traversal order of your maps. Note however that the comparator of a Freeze map should remain the same
throughout the life of the map. Berkeley DB stores records according to the key order provided by this comparator; switching to another comparator
will cause undefined behavior.

Key Sorting for Freeze Maps in C++

In C++, you specify the name of your comparator objects during code generation. The generated map provides the standard features of , std::map
so that iterators return entries according to the order you have defined for the main key with your comparator object. The , lower_bound upper_bou

, and functions provide range-searches (see the definition of these functions on).nd equal_range std::map

Apart from these standard features, the provides additional functions and methods to perform range searches using secondary keys. generated map
The additional functions are , , and , where is the name of the lowerBoundForMember upperBoundForMember equalRangeForMember Member
secondary-key member. These functions return regular iterators on the Freeze map.

Key Sorting for Freeze Maps in Java

In Java, you supply comparator objects (instances of the standard Java interface) at run time when instantiating the java.util.Comparator
generated map class. The accepts a comparator for the main key and optionally a collection of comparators for secondary keys. The map constructor
map also provides a number of methods for performing range searches on the main key and on secondary keys.

Indexing a Freeze Map
Freeze maps support efficient reverse lookups: if you define an index when you generate your map (with or), the slice2freeze slice2freezej
generated code provides additional methods for performing reverse lookups. If your value type is a structure or a class, you can also index on a
member of the value, and several such indexes can be associated with the same Freeze map.

https://doc.zeroc.com/pages/viewpage.action?pageId=14680497#UsingaFreezeMapinC++-TheFreezeMapClassinC++
https://doc.zeroc.com/display/Ice35/Using+a+Freeze+Map+in+Java#UsingaFreezeMapinJava-TheFreezeMapClassinJava

Ice 3.5.1 Documentation

7 Copyright © 2017, ZeroC, Inc.

Indexed searches are easy to use and very efficient. However, be aware that an index adds significant write overhead: with Berkeley DB, every
update triggers a read from the database to get the old index entry and, if necessary, replace it.

If you later add an index to an existing map, Freeze automatically populates the index the next time you open the map. Freeze populates the index by
instantiating each map entry, so it is important that you register the object factories for any class types in your map before you open the map.

Note that the index key comparator of a Freeze map index should remain the same throughout the life of the index. Berkeley DB stores records
according to the key order provided by this comparator; switching to another comparator will cause undefined behavior.

See Also

Using a Freeze Map in C++
Using a Freeze Map in Java

https://doc.zeroc.com/pages/viewpage.action?pageId=14680497
https://doc.zeroc.com/display/Ice35/Using+a+Freeze+Map+in+Java

	Freeze Map Concepts

