
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Removing Cyclic Dependencies
We mentioned that factoring the set and its mutex into a separate class instance does not really solve the cyclic dependency problem, earlier _names
at least not in general. To see why, suppose that we want to extend our factory with a new operation:getDetails

Slice

// ...

struct Details {
 PhoneEntry* proxy;
 string name;
 string phNum;
};

sequence<Details> DetailsSeq;

interface PhoneEntryFactory {
 // ...

 DetailsSeq getDetails();
};

This type of operation is common in collection managers: instead of returning a simple list of proxies, returns a sequence of structures, getDetails
each of which contains not only the object's proxy, but also some of the state of the corresponding object. The motivation for this is performance: with
a plain list of proxies, the client, once it has obtained the list, is likely to immediately follow up with one or more remote calls for each object in the list
in order to retrieve their state (for example, to display the list of objects to the user). Making all these additional remote procedure calls is inefficient,
and an operation such as gets the job done with a single RPC instead.getDetails

To implement in the factory, we need to iterate over the set of entries and invoke the operation on each object. (These getDetails getNumber
calls are collocated and therefore very efficient, so they do not suffer the performance problem that a client calling the same operations would suffer.)
However, this is potentially dangerous because the following sequence of events is possible:

Client A calls .getDetails
The implementation of must lock to prevent concurrent modification of the set during iteration.getDetails _namesMutex _names
Client B calls on a phone entry.destroy
The implementation of locks the entry's mutex , sets the flag, and then calls , which attempts to lock destroy _m _destroyed remove _nam

 in the factory. However, is already locked by , so blocks until is unlocked again.esMutex _namesMutex getDetails remove _m
getDetails, while iterating over its set of entries, happens to call on the entry that is currently being destroyed by client B. getNumber get

, in turn, tries to lock its mutex , which is already locked by .Number _m destroy

At this point, the server deadlocks: holds a lock on and waits for to become available, and holds a lock on getDetails _namesMutex _m destroy
 and waits for to become available, so neither thread can make progress._m _namesMutex

To get rid of the deadlock, we have two options:

Rearrange the locking such that deadlock becomes impossible.
Abandon the idea of calling back from the servants into the factory and use instead.reaping

We will explore both options in the following pages.

Topics

Acquiring Locks without Deadlocks
Reaping Objects

See Also

Life Cycle and Collection Operations

https://doc.zeroc.com/display/Ice35/Life+Cycle+and+Collection+Operations
https://doc.zeroc.com/display/Ice35/Acquiring+Locks+without+Deadlocks
https://doc.zeroc.com/display/Ice35/Reaping+Objects
https://doc.zeroc.com/display/Ice35/Life+Cycle+and+Collection+Operations

	Removing Cyclic Dependencies

