Ice 3.5.1 Documentation

Implementing Object Life Cycle in Java

The implementation of our life cycle design has the following characteristics:
® |t uses UUIDs as the object identities for nodes to avoid object reincarnation problems.
® When dest r oy is called on a node, the node needs to destroy itself and inform its parent directory that it has been destroyed (because the
parent directory is the node's factory and also acts as a collection manager for child nodes).
Note that, in contrast to the initial version, the entire implementation resides in a Fi | esyst em package instead of being part of the Fi | esyst em
package. Doing this is not essential, but is a little cleaner because it keeps the implementation in a package that is separate from the Slice-generated
package.
On this page:
Object Life Cycle Changes for the Nodel Class in Java
Object Life Cycle Changes for the Directoryl Class in Java

L]
L]
® Object Life Cycle Changes for the Filel Class in Java
® Object Life Cycle Concurrency Issues in Java

Object Life Cycle Changes for the Nodel Class in Java

OurDirectoryl andFi | el servants derive from a common Nodel base interface. This interface is not essential, but useful because it allows us to
treat servants of type Di rect oryl and Fi | el polymorphically:

Java

package Fil esystemn;
public interface Nodel

{
Ice.ldentity id();

}

The only method is the i d method, which returns the identity of the corresponding node.

Object Life Cycle Changes for the Di r ect or yl Class in Java

As in the initial version, the Di r ect or yl class derives from the generated base class _Di r ect or yDi sp. In addition, the class implements the Nodel
interface. Di r ect or yl must implement each of the Slice operations, leading to the following outline:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Object+Identity+and+Uniqueness
https://doc.zeroc.com/display/Ice35/Example+of+a+File+System+Server+in+Java
https://doc.zeroc.com/display/Ice35/Example+of+a+File+System+Server+in+Java

Ice 3.5.1 Documentation

Java

package Fil esystemnl;

import lce.*;
inport Filesystem*;

public class Directoryl extends _DirectoryDisp inplenents Nodel
{

public Identity

id();

public synchroni zed String
nane(Current c);

public synchroni zed NodeDesc[]
list(Current c);

public synchroni zed NodeDesc
find(String nane, Current c) throws NoSuchNane;

public synchroni zed Fil ePrx
createFile(String nane, Current c) throws Nanel nUse;

public synchronized DirectoryPrx
createDirectory(String name, Current c) throws Nanel nUse;

public void
destroy(Current c) throws PernissionDenied;

/1

To support the implementation, we also require a number of methods and data members:

Java

package Fil esystemn;

inport Ice.*;
import Filesystem *;

public class Directoryl extends _DirectoryDisp inplenents Nodel

{
/1
public Directoryl();
public Directoryl (String nane, Directoryl parent);
public synchroni zed void
renmoveEntry(String nane);
private String _nang; /1 | mmut abl e
private Directoryl _parent; // |Imutable
private ldentity _id; /1 | 'mmut abl e
private bool ean _destroyed;
private java.util.Map<String, Nodel> _contents;
}

The _nane and _par ent members store the name of this node and a reference to the node's parent directory. (The root directory's _par ent
member is null.) Similarly, the _i d member stores the identity of this directory. The _nane, _par ent, and _i d members are immutable once they
have been initialized by the constructor. The _dest r oyed member prevents a race condition; to interlock access to _dest r oyed (as well as the _co
nt ent s member) we can use synchronized methods (as for the nane method), or use a synchr oni zed(t hi s) block.

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Life+Cycle+and+Normal+Operations

Ice 3.5.1 Documentation

The _cont ent s map records the contents of a directory: it stores the name of an entry, together with a reference to the child node.

Here are the two constructors for the class:

Java

public Directoryl ()

{
this("/", null);
}
public Directoryl (String nane, Directoryl parent)
{
_nhanme = nane;
_parent = parent;
_id = new ldentity();
_destroyed = fal se;
_contents = new java. util.HashMap<String, Nodel>();
_id.name = parent == null ? "RootDir" : java.util.UU D.randomJuU D().toString();
}

The first constructor is a convenience function to create the root directory with the fixed identity "RootDir" and a null parent.

The real constructor initializes the _name, _parent, _i d, _destroyed, and _cont ent s members. Note that nodes other than the root directory
use a UUID as the object identity.

The r enoveEnt ry method is called by the child to remove itself from its parent's _cont ent s map:

Java

public synchroni zed void
removeEntry(String nane)

{

_contents. renove(nane);

}

The implementation of the Slice name operation simply returns the name of the node, but also checks whether the node has been destroyed:

Java

public synchronized String
nanme(Current c)

if (_destroyed)

t hrow new Qbj ect Not Exi st Exception();
return _nane;

Note that this method is synchronized, so the _dest r oyed member cannot be accessed concurrently.

Here is the dest r oy member function for directories:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Life+Cycle+and+Normal+Operations

Ice 3.5.1 Documentation

Java
public void
destroy(Current c) throws Perm ssi onDenied
{
if (_parent == null)

t hrow new Perm ssi onDeni ed(" Cannot destroy root directory");

synchroni zed(this) {
if (_destroyed)
t hrow new Cbj ect Not Exi st Exception();

if (_contents.size() !'= 0)
throw new Permi ssi onDeni ed(" Cannot destroy non?enpty directory");

c.adapter.remove(id());
_destroyed = true;

}

_parent.renmoveEntry(_nane);

The code first prevents destruction of the root directory and then checks whether this directory was destroyed previously. It then acquires the lock
and checks that the directory is empty. Finally, dest r oy removes the Active Servant Map (ASM) entry for the destroyed directory and removes itself
from its parent's _cont ent s map. Note that we call r enoveEnt r y outside the synchronization to avoid deadlocks.

The cr eat eDi r ect or y implementation acquires the lock before checking whether the directory already contains a node with the given name (or an
invalid empty name). If not, it creates a new servant, adds it to the ASM and the _cont ent s map, and returns its proxy:

Java

public synchroni zed DirectoryPrx
createDirectory(String name, Current c) throws Nanel nUse

{
if (_destroyed)
t hrow new Cbj ect Not Exi st Exception();
if (nane.length() == 0 || _contents.contai nsKey(nane))
t hrow new Nanel nUse(nane) ;
Directoryl d = new Directoryl(nane, this);
bj ect Prx node = c.adapter.add(d, d.id());
_contents. put (nanme, d);
return DirectoryPrxHel per.uncheckedCast (node);
}

The cr eat eFi | e implementation is identical, except that it creates a file instead of a directory:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/The+Active+Servant+Map
https://doc.zeroc.com/display/Ice35/Acquiring+Locks+without+Deadlocks

Ice 3.5.1 Documentation

Java

public synchroni zed Fil ePrx
createFile(String nane, Current c) throws Nanel nUse

{
if (_destroyed)
t hrow new Qbj ect Not Exi st Exception();
if (name.length() == 0 || _contents. containsKey(nane))
t hrow new Nanel nUse(nane) ;
Filel f = new Filel(nane, this);
Qoj ect Prx node = c.adapter.add(f, f.id());
_contents. put (nane, f);
return Fil ePrxHel per.uncheckedCast (node) ;
}

Here is the implementation of | i st :

Java

public synchroni zed NodeDesc[]
list(Current c)

{
i f(_destroyed)
t hrow new Cbj ect Not Exi st Exception();
NodeDesc[] ret = new NodeDesc[_contents. size()];
java.util.lterator<java.util.Mp.Entry<String, Nodel> > pos =
_contents.entrySet().iterator();
for(int i =0; i < _contents.size(); ++i) {
java.util.Map. Entry<String, Nodel> e = pos.next();
Nodel p = e.getVal ue();
ret[i] = new NodeDesc();
ret[i].name = e.getKey();
ret[i].type = p instanceof Filel ? NodeType.FileType : NodeType. D rType;
ret[i].proxy = NodePrxHel per.uncheckedCast (c. adapter.createProxy(p.id()));
}
return ret;
}

After acquiring the lock, the code iterates over the directory's contents and adds a NodeDesc structure for each entry to the returned array.

The f i nd operation proceeds along similar lines:

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

Java

public synchroni zed NodeDesc
find(String nane, Current c) throws NoSuchName
{
if (_destroyed)
t hrow new Qbj ect Not Exi st Exception();

Nodel p = _contents. get(nane);
if (p==null)
t hrow new NoSuchNane(narne) ;

NodeDesc d = new NodeDesc();

d. name = nane;

d.type = p instanceof Filel ? NodeType.FileType : NodeType. D rType;
d. proxy = NodePrxHel per. uncheckedCast (c. adapter.createProxy(p.id()));
return d;

Object Life Cycle Changes for the Fi | el Class in Java

The Fi | el class is similar to the Di r ect oryl class. The data members store the name, parent, and identity of the file, as well as the _dest r oyed
flag and the contents of the file (in the _| i nes member). The constructor initializes these members:

Java

package Fil esystemn;

inport Ice.*;
import Filesystem *;
import Filesystem.*;

public class Filel extends _FileDisp inplenments Nodel

{
11

public Filel (String name, Directoryl parent)
{

_nanme = nane;

_parent = parent;

_destroyed = fal se;

_id = new ldentity();

_id.name = Util.generateUU IX);
}

private String _naneg;
private Directoryl _parent;
private bool ean _destroyed;
private ldentity _id;
private String[] _lines;

The implementation of the remaining member functions of the Fi | el class is trivial, so we present all of them here:

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

Java

public synchroni zed String
nanme(Current c)

{ if (_destroyed)
t hrow new Qbj ect Not Exi st Exception();
return _nane;
}
public Identity
id()
{

return _id;

}

public synchronized String[]
read(Current c)

{
if (_destroyed)
t hrow new Qbj ect Not Exi st Exception();
return _lines;
}

public synchronized void
wite(String[] text, Current c)

{
if (_destroyed)
t hrow new Cbj ect Not Exi st Exception();
_lines = (String[])text.clone();
}
public void
destroy(Current c)
{
synchroni zed(this) {
if (_destroyed)
t hrow new Cbj ect Not Exi st Exception();
c. adapter.remove(id());
_destroyed = true;
}
_parent. renmoveEntry(_name);
}

Object Life Cycle Concurrency Issues in Java

The preceding implementation is provably deadlock free. All methods hold only one lock at a time, so they cannot deadlock with each other or
themselves. While the locks are held, the methods do not call other methods that acquire locks, so any potential deadlock can only arise by
concurrent calls to another mutating method, either on the same node or on different nodes. For concurrent calls on the same node, deadlock is
impossible because such calls are strictly serialized on the instance; for concurrent calls to dest r oy on different nodes, each node locks itself,
releases itself again, and then acquires and releases a lock on its parent (by calling r enbveEnt r y), also making deadlock impossible.

See Also

Example of a File System Server in Java
Life Cycle and Normal Operations
Object Identity and Uniqueness
Acquiring Locks without Deadlocks

The Active Servant Map

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Example+of+a+File+System+Server+in+Java
https://doc.zeroc.com/display/Ice35/Life+Cycle+and+Normal+Operations
https://doc.zeroc.com/display/Ice35/Object+Identity+and+Uniqueness
https://doc.zeroc.com/display/Ice35/Acquiring+Locks+without+Deadlocks
https://doc.zeroc.com/display/Ice35/The+Active+Servant+Map

	Implementing Object Life Cycle in Java

