
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

1.
2.
3.
4.

Implementing a destroy Operation
As far as the Ice run time is concerned, the act of destroying an Ice object is to remove the mapping between its proxy and its servant. In other
words, an Ice object is destroyed when we remove its entry from the (ASM). Once the ASM entry is gone, incoming operations Active Servant Map
for the object raise , as they should.ObjectNotExistException

On this page:

Object Destruction and Concurrency
Concurrent Execution of Life Cycle and Non-Life Cycle Operations

Object Destruction and Concurrency
Here is the simplest version of :destroy

C++

void
PhoneEntryI::destroy(const Current& c)
{
 try {
 c.adapter?>remove(c.id);
 } catch (const Ice::NotRegisteredException&)
 throw Ice::ObjectNotExistException(__FILE__, __LINE__);
 }
}

The implementation removes the ASM entry for the servant, thereby destroying the Ice object. If the entry does not exist (presumably, because the
object was destroyed previously), throws an , as you would expect.destroy ObjectNotExistException

The ASM entry is removed as soon as calls on the object adapter. Assuming that we implement as we saw earlier, so no destroy remove create
other part of the code retains a smart pointer to the servant, this means that the ASM holds the only smart pointer to the servant, so the servant's
reference count is 1.

Once the ASM entry is removed (and its smart pointer destroyed), the reference count of the servant drops to zero. In C++, this triggers a call to the
destructor of the servant, and the heap-allocated servant is deleted just as it should be; in languages such as Java and C#, this makes the servant
eligible for garbage collection, so it will be deleted eventually as well.

Things get more interesting if we consider concurrent scenarios. One such scenario involves concurrent calls to and . Suppose we create destroy
have the following sequence of events:

Client A creates a phone entry.
Client A passes the proxy for the entry to client B.
Client A destroys the entry.
Client A calls for the same entry (passing the same name, which serves as the) and, concurrently, client B calls create object identity dest

 on the entry.roy

Clearly, something is strange about this scenario, because it involves two clients asking for conflicting things, with one client trying to create an object
that existed previously, while another client tries to destroy the object that — unbeknownst to that client — was destroyed earlier.

Exactly what is seen by client A and client B depends on how the operations are dispatched in the server. In particular, the outcome depends on the
order in which the to (in) and (in) on the servant are executed:calls on the object adapter add create remove destroy

If the thread processing client A's invocation executes before the thread processing client B's invocation, client A's call to add add
succeeds. Internally, the calls to and are serialized, and client B's call to blocks until client A's call to has add remove remove add
completed. The net effect is that both clients see their respective invocations complete successfully.
If the thread processing client B's invocation executes before the thread processing client A's invocation executes , client B's remove add
thread receives a , which results in an in client B. Client A's thread then NotRegisteredException ObjectNotExistException
successfully calls , creating the object and returning its proxy.add

This example illustrates that, if life cycle operations interleave in this way, the outcome depends on thread scheduling. However, as far as the Ice run
time is concerned, doing this is perfectly safe: concurrent access does not cause problems for memory management or the integrity of data structures.

We use in C++, which are analogous to object references in languages such as Java and C#.smart pointers

https://doc.zeroc.com/display/Ice35/The+Active+Servant+Map
https://doc.zeroc.com/display/Ice35/Object+Identity+and+Uniqueness
https://doc.zeroc.com/display/Ice35/Servant+Activation+and+Deactivation
https://doc.zeroc.com/display/Ice35/Smart+Pointers+for+Classes

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

1.

2.
3.

4.
5.

6.

The preceding scenario allows two clients to attempt to perform conflicting operations. This is possible because clients can control the object identity
of each phone entry: if the object identity were hidden from clients and assigned by the server (the server could assign a UUID to each entry, for
example), the above scenario would not be possible. We will return to a more detailed discussion of such object identity issues in Object Identity and

.Uniqueness

Concurrent Execution of Life Cycle and Non-Life Cycle Operations

Another scenario relates to concurrent execution of ordinary (non-life cycle) operations and :destroy

Client A holds a proxy to an existing object and passes that proxy to client B.
Client B calls the operation on the object.setNumber
Client A calls on the object .destroy while Client B's call to is still executingsetNumber

The immediate question is what this means with respect to memory management. In particular, client A's thread calls on the object adapter remove
while client B's thread is still executing inside the object. If this call to were to delete the servant immediately, it would delete the servant remove
while client B's thread is still executing inside the servant, with potentially disastrous results.

The answer is that this cannot happen. Whenever the Ice run time dispatches an incoming invocation to a servant, it increments the servant's
reference count for the duration of the call, and decrements the reference count again once the call completes. Here is what happens to the servant's
reference count for the preceding scenario:

Initially, the servant is idle, so its reference count is at least 1 because the ASM entry stores a smart pointer to the servant. (The remainder
of these steps assumes that the ASM stores the smart pointer to the servant, so the reference count is exactly 1.)only
Client B's invocation of arrives and the Ice run time increments the reference count to 2 before dispatching the call.setNumber
While is still executing, client A's invocation of arrives and the Ice run time increments the reference count to 3 before setNumber destroy
dispatching the call.
Client A's thread calls on the object adapter, which destroys the smart pointer in the ASM and so decrements the reference to 2.remove
Either or may complete first. It does not matter which call completes — either way, the Ice run time decrements the setNumber destroy
reference count as the call completes, so after one of these calls completes, the reference count drops to 1.
Eventually, when the final call (or) completes, the Ice run time decrements the reference count once again, which setNumber destroy
causes the count to drop to zero. In turn, this triggers the call to (which calls the servant's destructor).delete

The net effect is that, while operations are executing inside a servant, the servant's reference count is always greater than zero. As the invocations
complete, the reference count drops until, eventually, it reaches zero. However, that can only happen once no operations are executing, that is, once
the servant is idle. This means that the Ice run time guarantees that a servant's destructor runs only once the final operation invocation has drained
out of the servant, so it is impossible to "pull memory out from underneath an executing invocation".

See Also

The Active Servant Map
Object Identity and Uniqueness
Servant Activation and Deactivation

This section applies to C++ only.

For garbage-collected languages, such as C# and Java, the language run time provides the same semantics: while the servant can be
reached via any reference in the application or the Ice run time, the servant will not be reclaimed by the garbage collector.

https://doc.zeroc.com/display/Ice35/Object+Identity+and+Uniqueness
https://doc.zeroc.com/display/Ice35/Object+Identity+and+Uniqueness
https://doc.zeroc.com/display/Ice35/The+Active+Servant+Map
https://doc.zeroc.com/display/Ice35/Object+Identity+and+Uniqueness
https://doc.zeroc.com/display/Ice35/Servant+Activation+and+Deactivation

	Implementing a destroy Operation

