
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Object Creation
Now that we understand what it means for an Ice object to exist, we can look at what is involved in creating an Ice object. Fundamentally, there is
only one way for an Ice object to come into being: the server must instantiate a servant for the object and add an entry for that servant to the Active

 (ASM) (or, alternatively, arrange for a to return a servant from its operation).Servant Map servant locator locate

One obvious way for a server to create a servant is to, well, simply instantiate it and add it to the ASM of its own accord. For example:

C++

DirectoryIPtr root = new DirectoryI("/", 0);
adapter?>addWithUUID(root); // Ice object exists now

The servant exists as soon as the call to completes, and the Ice object exists as soon as the code adds the servant to the ASM: at that point, the new
Ice object becomes reachable to clients who hold a proxy to it.

This is the way we created Ice objects for our file system application earlier in the manual. However, doing so is not all that interesting because the
only files and directories that exist are those that the server decides to create when it starts up. What we really want is a way for to create and clients
destroy directories and files.

On this page:

Creating an Object with a Factory
Implementing a Factory Operation

Creating an Object with a Factory
The canonical way to create an object is to use the factory pattern . The factory pattern, in a nutshell, says that objects are created by invoking an [1]
operation (usually called) on an object factory:create

Slice

interface PhoneEntry {
 idempotent string name();
 idempotent string getNumber();
 idempotent void setNumber(string phNum);
};

exception PhoneEntryExists {
 string name;
 string phNum;
};

interface PhoneEntryFactory {
 PhoneEntry* create(string name, string phNum)
 throws PhoneEntryExists;
};

The entries in the phone book consist of simple name-number pairs. The interface to each entry is called and provides operations to PhoneEntry
read the name and to read and write the phone number. (For a real application, the objects would likely be more complex and encapsulate more
state. However, these simple objects will do for the purposes of this discussion.)

For the remainder of this chapter, we will ignore the distinction between using the ASM and a servant locator and simply assume that the
code uses the ASM. This is because servant locators do not alter the discussion: if returns a servant, that is the same as a locate
successful lookup in the ASM; if returns null or throws , that is the same as an unsuccessful locate ObjectNotExistException
lookup in the ASM.

Rather than continue with the file system example, we will simplify the discussion for the time being by using the phone book example
mentioned earlier; we will return to the file system application to explore .more complex issues

https://doc.zeroc.com/display/Ice35/The+Active+Servant+Map
https://doc.zeroc.com/display/Ice35/The+Active+Servant+Map
https://doc.zeroc.com/display/Ice35/Servant+Locators
https://doc.zeroc.com/display/Ice35/Object+Life+Cycle+for+the+File+System+Application

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

To create a new entry, a client calls the operation on a object. (The factory is a singleton object — that is, only create PhoneEntryFactory [1]
one instance of that interface exists in the server.) It is the job of to create a new object, using the supplied name as the create PhoneEntry object

.identity

An immediate consequence of using the name as the object identity is that can raise a exception: presumably, if a create PhoneEntryExists
client attempts to create an entry with the same name as an already-existing entry, we need to let the client know about this. (Whether this is an
appropriate design is something we examine more closely in .)Object Identity and Uniqueness

create returns a proxy to the newly-created object, so the client can use that proxy to invoke operations. However, this is by convention only. For
example, could be a operation if the client has some other way to eventually get a proxy to the new object (such as creating the proxy create void
from a string, or locating the proxy via a search operation). Alternatively, you could define "bulk" creation operations that allow clients to create
several new objects with a single RPC. As far as the Ice run time is concerned, there is nothing special about a factory operation: a factory operation
is just like any other operation; it just so happens that a factory operation creates a new Ice object as a side effect of being called, that is, the impleme

 of the operation is what creates the object, not the Ice run time.ntation

Also note that accepts a and a parameter, so it can initialize the new object. This is not compulsory, but generally a good idea. create name phNum
An alternate factory operation could be:

Slice

interface PhoneEntryFactory {
 PhoneEntry* create(string name)
 throws PhoneEntryExists;
};

With this design, the assumption is that the client will call after it has created the object. However, in general, allowing objects that are setNumber
not fully initialized is a bad idea: it all too easily happens that a client either forgets to complete the initialization, or happens to crash or get
disconnected before it can complete the initialization. Either way, we end up with a partially-initialized object in the system that can cause surprises
later.

Similarly, so-called factories are also something to be avoided:generic

Slice

dictionary<string, string> Params;

exception CannotCreateException {
 string reason;
};

interface GenericFactory {
 Object* create(Params p)
 throws CannotCreateException;
};

The intent here is that a can be used to create any kind of object; the dictionary allows an arbitrary number of parameters GenericFactory Params
to be passed to the operation in the form of name — value pairs, for example:create

This is the approach taken by COM's , which suffers from just that problem.CoCreateObject

https://doc.zeroc.com/display/Ice35/Object+Identity
https://doc.zeroc.com/display/Ice35/Object+Identity
https://doc.zeroc.com/display/Ice35/Object+Identity+and+Uniqueness

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

C++

GenericFactoryPrx factory = ...;

Ice::ObjectPrx obj;
Params p;

// Make a car.
//
p["Make"] = "Ford";
p["Model"] = "Falcon";
obj = factory?>create(p);
CarPrx car = CarPrx::checkedCast(obj);

// Make a horse.
//
p.clear();
p["Breed"] = "Clydesdale";
p["Sex"] = "Male";
obj = factory?>create(p);
HorsePrx horse = HorsePrx::checkedCast(obj);

We strongly discourage you from creating factory interfaces such as this, unless you have a good overriding reason: generic factories undermine type
safety and are much more error-prone than strongly-typed factories.

Implementing a Factory Operation
The implementation of an object factory is simplicity itself. Here is how we could implement the operation for our :create PhoneEntryFactory

C++

PhoneEntryPrx
PhoneEntryFactory::create(const string& name, const string& phNum, const Current& c)
{
 try {
 CommunicatorPtr comm = c.adapter.getCommunicator();
 PhoneEntryPtr servant = new PhoneEntryI(name, phNum);
 return PhoneEntryPrx::uncheckedCast(c.adapter?>add(servant, comm?>stringToIdentity(name)));
 } catch (const Ice::AlreadyRegisteredException&) {
 throw PhoneEntryExists(name, phNum);
 }
}

The function instantiates a new object (which is the servant for the new object), adds the servant to the ASM, create PhoneEntryI PhoneEntry
and returns the proxy for the new object. Adding the servant to the ASM is what creates the new Ice object, and client requests are dispatched to the
new object as soon as that entry appears in the ASM (assuming the).object adapter is active

Note that, even though this code contains no explicit lock, it is thread-safe. The operation on the object adapter is atomic: if two clients add
concurrently add a servant with the same identity, exactly one thread succeeds in adding the entry to the ASM; the other thread receives an Already

. Similarly, if two clients concurrently call for different entries, the two calls execute concurrently in the server (if the RegisteredException create
server is multi-threaded); the implementation of in the Ice run time uses appropriate locks to ensure that concurrent updates to the ASM cannot add
corrupt anything.

See Also

The Active Servant Map
Servant Locators
Object Identity
Object Identity and Uniqueness
Object Life Cycle for the File System Application
Object Adapter States
Servant Activation and Deactivation

https://doc.zeroc.com/display/Ice35/Object+Adapter+States
https://doc.zeroc.com/display/Ice35/Servant+Activation+and+Deactivation
https://doc.zeroc.com/display/Ice35/The+Active+Servant+Map
https://doc.zeroc.com/display/Ice35/Servant+Locators
https://doc.zeroc.com/display/Ice35/Object+Identity
https://doc.zeroc.com/display/Ice35/Object+Identity+and+Uniqueness
https://doc.zeroc.com/display/Ice35/Object+Life+Cycle+for+the+File+System+Application
https://doc.zeroc.com/display/Ice35/Object+Adapter+States
https://doc.zeroc.com/display/Ice35/Servant+Activation+and+Deactivation

Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

1.

References

Gamma, E., et al. 1994. . Reading, MA: Addison-Wesley.Design Patterns

http://amzn.com/0201633612

	Object Creation

