
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

C++ Mapping for Interfaces
The mapping of Slice revolves around the idea that, to invoke a remote operation, you call a member function on a local class instance that interfaces
is a for the remote object. This makes the mapping easy and intuitive to use because making a remote procedure call is no different from proxy
making a local procedure call (apart from error semantics).

On this page:

Proxy Classes and Proxy Handles
Inheritance from Ice::Object
Proxy Handles
ProxyType and PointerType

Methods on Proxy Handles
Default constructor
Copy constructor
Assignment operator
Checked cast
Unchecked cast
Stream insertion and stringification

Using Proxy Methods in C++
Object Identity and Proxy Comparison in C++

Proxy Classes and Proxy Handles
On the client side, a Slice interface maps to a class with member functions that correspond to the operations on that interface. Consider the following
simple interface:

Slice

module M {
 interface Simple {
 void op();
 };
};

The Slice compiler generates the following definitions for use by the client:

https://doc.zeroc.com/display/Ice35/Interfaces%2C+Operations%2C+and+Exceptions
https://doc.zeroc.com/display/Ice35/Proxies

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

C++

namespace IceProxy {
 namespace M {
 class Simple;
 }
}

namespace M {
 class Simple;
 typedef IceInternal::ProxyHandle< ::IceProxy::M::Simple> SimplePrx;
 typedef IceInternal::Handle< ::M::Simple> SimplePtr;
}

namespace IceProxy {
 namespace M {
 class Simple : public virtual IceProxy::Ice::Object {
 public:
 typedef ::M::SimplePrx ProxyType;
 typedef ::M::SimplePtr PointerType;

 void op();
 void op(const Ice::Context&);
 // ...

 static const ::std::string& ice_staticId();
 };
 };
}

As you can see, the compiler generates a in the namespace, as well as a handle . In proxy class Simple IceProxy::M proxy M::SimplePrx
general, for a module , the generated names are and .M ::IceProxy::M::<interface-name> ::M::<interface-name>Prx

In the client's address space, an instance of is the local ambassador for a remote instance of the interface in a IceProxy::M::Simple Simple
server and is known as a . All the details about the server-side object, such as its address, what protocol to use, and its object proxy class instance
identity are encapsulated in that instance.

Inheritance from Ice::Object

Simple inherits from , reflecting the fact that all Ice interfaces implicitly inherit from . For each operation in IceProxy::Ice::Object Ice::Object
the interface, the proxy class has two overloaded member functions of the same name. For the preceding example, we find that the operation has op
been mapped to two member functions .op

One of the overloaded member functions has a trailing parameter of type . This parameter is for use by the Ice run time to store Ice::Context
information about how to deliver a request; normally, you do not need to supply a value here and can pretend that the trailing parameter does not
exist. (The parameter is also used by .)IceStorm

Proxy Handles

Client-side application code never manipulates proxy class instances directly. In fact, you are not allowed to instantiate a proxy class directly. The
following code will not compile because is an abstract base class with a protected constructor and destructor:Ice::Object

C++

IceProxy::M::Simple s; // Compile-time error!

Proxy instances are always instantiated on behalf of the client by the Ice run time, so client code never has any need to instantiate a proxy directly.
When the client receives a proxy from the run time, it is given a to the proxy, of type (for the proxy handle <interface-name>Prx SimplePrx
preceding example). The client accesses the proxy via its proxy handle; the handle takes care of forwarding operation invocations to its underlying
proxy, as well as reference-counting the proxy. This means that no memory-management issues can arise: deallocation of a proxy is automatic and
happens once the last handle to the proxy disappears (goes out of scope).

https://doc.zeroc.com/display/Ice35/Request+Contexts
https://doc.zeroc.com/display/Ice35/IceStorm

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

Because the application code always uses proxy handles and never touches the proxy class directly, we usually use the term proxy to denote both
proxy handle and proxy class. This reflects the fact that, in actual use, the proxy handle looks and feels like the underlying proxy class instance. If the
distinction is important, we use the terms , , and .proxy class proxy class instance proxy handle

ProxyType and PointerType

The generated proxy class contains type definitions for and . These are provided so you can refer to the proxy type and ProxyType PointerType s
 in template definitions without having to resort to preprocessor trickery, for example:mart pointer type

C++

template<typename T>
class ProxyWrapper {
public:
 T::ProxyType proxy() const;
 // ...
};

Methods on Proxy Handles
As we saw for the preceding example, the handle is actually a template of type that takes the proxy class as the IceInternal::ProxyHandle
template parameter. This template has the usual default constructor, copy constructor, and assignment operator.

Default constructor

You can default-construct a proxy handle. The default constructor creates a proxy that points nowhere (that is, points at no object at all). If you invoke
an operation on such a null proxy, you get an :IceUtil::NullHandleException

C++

try {
 SimplePrx s; // Default-constructed proxy
 s->op(); // Call via nil proxy
 assert(0); // Can't get here
} catch (const IceUtil::NullHandleException&) {
 cout << "As expected, got a NullHandleException" << endl;
}

Copy constructor

The copy constructor ensures that you can construct a proxy handle from another proxy handle. Internally, this increments a reference count on the
proxy; the destructor decrements the reference count again and, once the count drops to zero, deallocates the underlying proxy class instance. That
way, memory leaks are avoided:

C++

{ // Enter new scope
 SimplePrx s1 = ...; // Get a proxy from somewhere
 SimplePrx s2(s1); // Copy-construct s2
 assert(s1 == s2); // Assertion passes
} // Leave scope; s1, s2, and the
 // underlying proxy instance
 // are deallocated

Note the assertion in this example: .proxy handles support comparison

https://doc.zeroc.com/display/Ice35/Smart+Pointers+for+Classes
https://doc.zeroc.com/display/Ice35/Smart+Pointers+for+Classes

Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

Assignment operator

You can freely assign proxy handles to each other. The handle implementation ensures that the appropriate memory-management activities take
place. Self-assignment is safe and you do not have to guard against it:

C++

SimplePrx s1 = ...; // Get a proxy from somewhere
SimplePrx s2; // s2 is nil
s2 = s1; // both point at the same object
s1 = 0; // s1 is nil
s2 = 0; // s2 is nil

Widening assignments work implicitly. For example, if we have two interfaces, and , we can widen a to a Base Derived DerivedPrx BasePrx
implicitly:

C++

BasePrx base;
DerivedPrx derived;
base = derived; // Fine, no problem
derived = base; // Compile-time error

Implicit narrowing conversions result in a compile error, so the usual C++ semantics are preserved: you can always assign a derived type to a base
type, but not vice versa.

Checked cast

Proxy handles provide a method:checkedCast

C++

namespace IceInternal {
 template<typename T>
 class ProxyHandle : public IceUtil::HandleBase<T> {
 public:
 template<class Y>
 static ProxyHandle checkedCast(const ProxyHandle<Y>& r);

 template<class Y>
 static ProxyHandle checkedCast(const ProxyHandle<Y>& r, const ::Ice::Context& c);

 // ...
 };
}

A checked cast has the same function for proxies as a C++ has for pointers: it allows you to assign a base proxy to a derived proxy. dynamic_cast
If the base proxy's actual run-time type is compatible with the derived proxy's static type, the assignment succeeds and, after the assignment, the
derived proxy denotes the same object as the base proxy. Otherwise, if the base proxy's run-time type is incompatible with the derived proxy's static
type, the derived proxy is set to null. Here is an example to illustrate this:

Ice 3.5.1 Documentation

5 Copyright © 2017, ZeroC, Inc.

C++

BasePrx base = ...; // Initialize base proxy
DerivedPrx derived;
derived = DerivedPrx::checkedCast(base);
if (derived) {
 // Base has run-time type Derived,
 // use derived...
} else {
 // Base has some other, unrelated type
}

The expression tests whether points at an object of type (or an object with a type that is DerivedPrx::checkedCast(base) base Derived
derived from). If so, the cast succeeds and is set to point at the same object as . Otherwise, the cast fails and is Derived derived base derived
set to the null proxy.

Note that is a static member function so, to do a down-cast, you always use the syntax .checkedCast <interface-name>Prx::checkedCast

Also note that you can use proxies in boolean contexts. For example, returns true if the .if (proxy) proxy is not null

A typically results in a remote message to the server.The message effectively asks the server "is the object denoted by this reference checkedCast
of typeDerived?"

The reply from the server is communicated to the application code in form of a successful (non-null) or unsuccessful (null) result. Sending a remote
message is necessary because, as a rule, there is no way for the client to find out what the actual run-time type of a proxy is without confirmation
from the server. (For example, the server may replace the implementation of the object for an existing proxy with a more derived one.) This means
that you have to be prepared for a to fail. For example, if the server is not running, you will receive a if checkedCast ConnectFailedException;
the server is running, but the object denoted by the proxy no longer exists, you will receive an .ObjectNotExistException

Unchecked cast

In some cases, it is known that an object supports a more derived interface than the static type of its proxy. For such cases, you can use an
unchecked down-cast:

C++

namespace IceInternal {
 template<typename T>
 class ProxyHandle : public IceUtil::HandleBase<T> {
 public:
 template<class Y>
 static ProxyHandle uncheckedCast(const ProxyHandle<Y>& r);
 // ...
 };
}

An provides a down-cast consulting the server as to the actual run-time type of the object, for example:uncheckedCast without

C++

BasePrx base = ...; // Initialize to point at a Derived
DerivedPrx derived;
derived = DerivedPrx::uncheckedCast(base);
// Use derived...

In some cases, the Ice run time can optimize the cast and avoid sending a message. However, the optimization applies only in narrowly-
defined circumstances, so you cannot rely on a not sending a message.checkedCast

Ice 3.5.1 Documentation

6 Copyright © 2017, ZeroC, Inc.

You should use an only if you are certain that the proxy indeed supports the more derived type: an , as the name uncheckedCast uncheckedCast
implies, is not checked in any way; it does not contact the object in the server and, if it fails, it does not return null. (An unchecked cast is
implemented internally like a C++ , no checks of any kind are made). If you use the proxy resulting from an incorrect static_cast uncheckedCast
to invoke an operation, the behavior is undefined. Most likely, you will receive an , but, depending on the OperationNotExistException
circumstances, the Ice run time may also report an exception indicating that unmarshaling has failed, or even silently return garbage results.

Despite its dangers, is still useful because it avoids the cost of sending a message to the server. And, particularly during uncheckedCast initialization
, it is common to receive a proxy of static type , but with a known run-time type. In such cases, an saves the Ice::Object uncheckedCast
overhead of sending a remote message.

Stream insertion and stringification

For convenience, proxy handles also support insertion of a proxy into a stream, for example:

C++

Ice::ObjectPrx p = ...;
cout << p << endl;

This code is equivalent to writing:

C++

Ice::ObjectPrx p = ...;
cout << p->ice_toString() << endl;

Either code prints the . You could also achieve the same thing by writing:stringified proxy

C++

Ice::ObjectPrx p = ...;
cout << communicator->proxyToString(p) << endl;

The advantage of using the member function instead of is that you do not need to have the communicator ice_toString proxyToString
available at the point of call.

Using Proxy Methods in C++
The base proxy class supports a variety of . Since proxies are immutable, each of these "factory ObjectPrx methods for customizing a proxy
methods" returns a copy of the original proxy that contains the desired modification. For example, you can obtain a proxy configured with a ten
second timeout as shown below:

C++

Ice::ObjectPrx proxy = communicator->stringToProxy(...);
proxy = proxy->ice_timeout(10000);

A factory method returns a new proxy object if the requested modification differs from the current proxy, otherwise it returns the current proxy. With
few exceptions, factory methods return a proxy of the same type as the current proxy, therefore it is generally not necessary to repeat a down-cast
after using a factory method. The example below demonstrates these semantics:

https://doc.zeroc.com/pages/viewpage.action?pageId=14680620
https://doc.zeroc.com/pages/viewpage.action?pageId=14680620
https://doc.zeroc.com/display/Ice35/Proxy+and+Endpoint+Syntax
https://doc.zeroc.com/display/Ice35/Proxy+Methods

Ice 3.5.1 Documentation

7 Copyright © 2017, ZeroC, Inc.

C++

Ice::ObjectPrx base = communicator->stringToProxy(...);
HelloPrx hello = HelloPrx::checkedCast(base);
hello = hello->ice_timeout(10000); // Type is preserved
hello->sayHello();

The only exceptions are the factory methods and . Calls to either of these methods may produce a proxy for an object of ice_facet ice_identity
an unrelated type, therefore they return a base proxy that you must subsequently down-cast to an appropriate type.

Object Identity and Proxy Comparison in C++
Proxy handles support comparison using the following operators:

operator==
operator!=
These operators permit you to compare proxies for equality and inequality. To test whether a proxy is null, use a comparison with the literal 0
, for example:

C++

if (proxy == 0)
 // It's a nil proxy
else
 // It's a non-nil proxy

operator<
operator<=
operator>
operator>=
Proxies support comparison. This allows you to place proxies into STL containers such as maps or sorted lists.

Boolean comparison
Proxies have a conversion operator to . The operator returns true if a proxy is not null, and false otherwise. This allows you to write:bool

C++

BasePrx base = ...;
if (base)
 // It's a non-nil proxy
else
 // It's a nil proxy

Note that proxy comparison uses of the information in a proxy for the comparison. This means that not only the object identity must match for a all
comparison to succeed, but other details inside the proxy, such as the protocol and endpoint information, must be the same. In other words,
comparison with and tests for identity, object identity. A common mistake is to write code along the following lines:== != proxy not

C++

Ice::ObjectPrx p1 = ...; // Get a proxy...
Ice::ObjectPrx p2 = ...; // Get another proxy...

if (p1 != p2) {
 // p1 and p2 denote different objects // WRONG!
} else {
 // p1 and p2 denote the same object // Correct
}

Ice 3.5.1 Documentation

8 Copyright © 2017, ZeroC, Inc.

Even though and differ, they may denote the same Ice object. This can happen because, for example, both and embed the same object p1 p2 p1 p2
identity, but each use a different protocol to contact the target object. Similarly, the protocols may be the same, but denote different endpoints
(because a single Ice object can be contacted via several different transport endpoints). In other words, if two proxies compare equal with , we ==
know that the two proxies denote the same object (because they are identical in all respects); however, if two proxies compare unequal with , we ==
know absolutely nothing: the proxies may or may not denote the same object.

To compare the object identities of two proxies, you can use helper functions in the namespace:Ice

C++

namespace Ice {

 bool proxyIdentityLess(const ObjectPrx&, const ObjectPrx&);
 bool proxyIdentityEqual(const ObjectPrx&, const ObjectPrx&);
 bool proxyIdentityAndFacetLess(const ObjectPrx&, const ObjectPrx&);
 bool proxyIdentityAndFacetEqual(const ObjectPrx&, const ObjectPrx&);

}

The function returns true if the object identities embedded in two proxies are the same and ignores other information in the proxyIdentityEqual
proxies, such as facet and transport information. To include the in the comparison, use instead.facet name proxyIdentityAndFacetEqual

The function establishes a total ordering on proxies. It is provided mainly so you can use object identity comparison with STL proxyIdentityLess
sorted containers. (The function uses as the major ordering criterion, and as the minor ordering criterion.) The name category proxyIdentityAnd

 function behaves similarly to , except that it also compares the facet names of the proxies when their identities FacetLess proxyIdentityLess
are equal.

proxyIdentityEqual and allow you to correctly compare proxies for object identity. The example below proxyIdentityAndFacetLess
demonstrates how to use :proxyIdentityEqual

C++

Ice::ObjectPrx p1 = ...; // Get a proxy...
Ice::ObjectPrx p2 = ...; // Get another proxy...

if (!Ice::proxyIdentityEqual(p1, p2) {
 // p1 and p2 denote different objects // Correct
} else {
 // p1 and p2 denote the same object // Correct
}

See Also

Interfaces, Operations, and Exceptions
Proxies
C++ Mapping for Operations
Example of a File System Client in C++
Using Proxies
Facets and Versioning
IceStorm

https://doc.zeroc.com/display/Ice35/Facets+and+Versioning
https://doc.zeroc.com/display/Ice35/Interfaces%2C+Operations%2C+and+Exceptions
https://doc.zeroc.com/display/Ice35/Proxies
https://doc.zeroc.com/pages/viewpage.action?pageId=14680627
https://doc.zeroc.com/pages/viewpage.action?pageId=14680620
https://doc.zeroc.com/display/Ice35/Using+Proxies
https://doc.zeroc.com/display/Ice35/Facets+and+Versioning
https://doc.zeroc.com/display/Ice35/IceStorm

	C++ Mapping for Interfaces

