Ice 3.5.1 Documentation

The C++ Handle Template

IceUtil:: Handl e implements a smart reference-counted pointer type. Smart pointers are used to guarantee automatic deletion of heap-allocated
class instances.

Handl e is a template class with the following interface:

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice35/Smart+Pointers+for+Classes

C++

Ice 3.5.1 Documentation

t enpl at e<t ypenanme T>
class Handle : /* ... */ {
public:

}

typedef T el enent_type;

T _ptr;

T* operator->() const;

T& operator*() const;

T* get() const;

operator bool () const;

voi d swap(Handl eBase& ot her);

Handl e(T* p = 0);

t enpl at e<t ypenane Y>
Handl e(const Handl e<Y>& r);

Handl e(const Handl e& r);
~Handl e() ;
Handl e& operator=(T* p);

tenpl at e<t ypenanme Y>
Handl e& oper at or =(const Handl e<Y>& r);

Handl e& operator=(const Handle& r);

tenpl at e<cl ass Y>
static Handl e dynam cCast (const Handl eBase<Y>& r);

tenpl at e<cl ass Y>
static Handl e dynam cCast (Y* p);

tenpl at e<typenane T, typenane U>

bool

oper at or ==(const Handl e<T>& | hs, const Handl e<U>& rhs);

tenpl ate<typenane T, typenane U>

bool

operator!=(const Handl e<T>& | hs, const Handl e<U>& rhs);

tenpl ate<typenane T, typenane U>

bool

oper ator<(const Handl e<T>& | hs, const Handl e<U>& rhs);

tenpl at e<t ypenanme T, typenane U>

bool

oper at or<=(const Handl e<T>& | hs, const Handl e<U>& rhs);

tenpl at e<typenane T, typenanme U>

bool

oper at or >(const Handl e<T>& | hs, const Handl e<U>& rhs);

tenpl at e<t ypenanme T, typename U>

bool

0)

oper at or >=(const Handl e<T>& | hs, const Handl e<U>& rhs);

Note that the actual implementation is split into a base and a derived class. For simplicity, we show the combined interface here. If you

want to see the full implementation detail, it can be found in | ceUti | / Handl e. h.

Copyright © 2017, ZeroC, Inc.



Ice 3.5.1 Documentation

The template argument must be a class that derives from Shar ed or Si npl eShar ed (or that implements reference counting with the same interface
as these classes).

This is quite a large interface, but all it really does is to faithfully mimic the behavior of ordinary C++ class instance pointers. Rather than discussing
each member function in detail, we provide a simple overview here that outlines the most important points. Please see the discussion of Ice objects
for more examples of using smart pointers.

el enent _type

This type definition follows the STL convention of defining the element type with the fixed name el ement _t ype so you can use it for template
programming or the definition of generic containers.

_ptr

This data member stores the pointer to the underlying heap-allocated class instance.
Constructors, copy constructor, and assignment operators

These member functions allow you to construct, copy, and assign smart pointers as if they were ordinary pointers. In particular, the constructor and
assignment operator are overloaded to work with raw C++ class instance pointers, which results in the "adoption" of the raw pointer by the smart
pointer. For example, the following code works correctly and does not cause a memory leak:

C++

typedef Handl e<MyC ass> Myd assPtr;
voi d foo(const MyCl assPtr&);
/1

foo(new Wd ass); // OK no |eak here.

oper at or - >, oper at or *, and get

The arrow and indirection operators allow you to apply the usual pointer syntax to smart pointers to use the target of a smart pointer. The get
member function returns the class instance pointer to the underlying reference-counted class instance; the return value is the value of _ptr.

dynam cCast

This member function works exactly like a C++ dynanmi c_cast : it tests whether the argument supports the specified type and, if so, returns a non-
null pointer; if the target does not support the specified type, it returns null.

The reason for not using an actual dynani c_cast and using a dynani cCast function instead is that dynani c_cast only operates on
pointer types, but | ceUti | : : Handl e is a class.

For example:

C++

MWd assPtr p = ...;
MO herd assPtr o = ...;

0 = MOt herd assPtr: : dynam cCast (p);

if (o)
{
/1 o points at an instance of type M/Q herd ass.
}
el se
{
/Il p points at something that is
/1 not conpatible with MOt her C ass.
}

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/pages/viewpage.action?pageId=14680646
https://doc.zeroc.com/pages/viewpage.action?pageId=14680646
https://doc.zeroc.com/display/Ice35/Smart+Pointers+for+Classes

Ice 3.5.1 Documentation

Note that this example also illustrates the use of oper at or bool : when used in a boolean context, a smart pointer returns true if it is non-null and
false otherwise.

Comparison operators: ==, =, <, <= > >=
The comparison operators for smart pointers delegate to the operators of the underlying class, therefore the author of the reference-counted class
defines the semantics of smart pointer comparison. For example, in the case of Slice classes, the base class | ce: : Obj ect implements the

comparison operators in terms of pointer addresses. On the other hand, the base class for Slice proxies implements comparison using value
semantics.

See Also
® Smart Pointers for Classes

® C++ Mapping for Interfaces
® The C++ Shared and SimpleShared Classes

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice35/Smart+Pointers+for+Classes#SmartPointersforClasses-SmartPointerComparison
https://doc.zeroc.com/pages/viewpage.action?pageId=14680616#C++MappingforInterfaces-compare
https://doc.zeroc.com/display/Ice35/Smart+Pointers+for+Classes
https://doc.zeroc.com/pages/viewpage.action?pageId=14680616
https://doc.zeroc.com/pages/viewpage.action?pageId=14680646

	The C++ Handle Template

