
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

The Server-Side main Function in C++
On this page:

A Basic main Function in C++
The Ice::Application Class

Using Ice::Application on the Client Side
Catching Signals in C++
Ice::Application and Properties
Limitations of Ice::Application

The Ice::Service Class
Ice::Service Member Functions
Unix Daemons
Windows Services
Ice::Service Logging Considerations

A Basic Function in C++main
The main entry point to the Ice run time is represented by the local Slice interface . As for the client side, you must initialize the Ice::Communicator
Ice run time by calling before you can do anything else in your server. returns a smart pointer to an Ice::initialize Ice::initialize
instance of an :Ice::Communicator

C++

int
main(int argc, char* argv[])
{
 Ice::CommunicatorPtr ic = Ice::initialize(argc, argv);
 // ...
}

Ice::initialize accepts a C++ reference to and . The function scans the argument vector for any that are argc argv command-line options
relevant to the Ice run time; any such options are removed from the argument vector so, when returns, the only options and Ice::initialize
arguments remaining are those that concern your application. If anything goes wrong during initialization, throws an exception.initialize

Before leaving your function, you must call . The operation is responsible for finalizing the Ice run time. main Communicator::destroy destroy
In particular, waits for any operation implementations that are still executing in the server to complete. In addition, ensures that destroy destroy
any outstanding threads are joined with and reclaims a number of operating system resources, such as file descriptors and memory. Never allow
your function to terminate without calling first; doing so has undefined behavior.main destroy

The general shape of our server-side function is therefore as follows:main

Ice::initialize has to permit other information to be passed to the Ice run time.additional overloads

https://doc.zeroc.com/display/Ice35/Setting+Properties+on+the+Command+Line
https://doc.zeroc.com/display/Ice35/Communicator+Initialization

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

C++

#include <Ice/Ice.h>

int
main(int argc, char* argv[])
{
 int status = 0;
 Ice::CommunicatorPtr ic;
 try {
 ic = Ice::initialize(argc, argv);

 // Server code here...

 } catch (const Ice::Exception& e) {
 cerr << e << endl;
 status = 1;
 } catch (const std::string& msg) {
 cerr << msg << endl;
 status = 1;
 } catch (const char* msg) {
 cerr << msg << endl;
 status = 1;
 }
 if (ic) {
 try {
 ic->destroy();
 } catch (const Ice::Exception& e) {
 cerr << e << endl;
 status = 1;
 }
 }
 return status;
}

Note that the code places the call to in to a block and takes care to return the correct exit status to the operating system. Ice::initialize try
Also note that an attempt to destroy the communicator is made only if the initialization succeeded.

The handlers for and are in place as a convenience feature: if we encounter a fatal error condition catch const std::string & const char *
anywhere in the server code, we can simply throw a string or a string literal containing an error message; this causes the stack to be unwound back
to , at which point the error message is printed and, after destroying the communicator, terminates with non-zero exit status.main main

The ClassIce::Application
The preceding structure for the function is so common that Ice offers a class, , that encapsulates all the correct main Ice::Application
initialization and finalization activities. The definition of the class is as follows (with some detail omitted for now):

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

C++

namespace Ice {
 enum SignalPolicy { HandleSignals, NoSignalHandling };

 class Application /* ... */ {
 public:
 Application(SignalPolicy = HandleSignals);
 virtual ~Application();

 int main(int argc, char*[] argv);
 int main(int argc, char*[] argv, const char* config);
 int main(int argc, char*[] argv, const Ice::InitializationData& id);
 int main(int argc, char* const [] argv);
 int main(int argc, char* const [] argv, const char* config);
 int main(int argc, char* const [] argv, const Ice::InitializationData& id);
 int main(const Ice::StringSeq&);
 int main(const Ice::StringSeq&, const char* config);
 int main(const Ice::StringSeq&, const Ice::InitializationData& id);

#ifdef _WIN32
 int main(int argc, wchar_t*[] argv);
 int main(int argc, wchar_t*[] argv, const char* config);
 int main(int argc, wchar_t*[] argv, const Ice::InitializationData& id);
#endif

 virtual int run(int, char*[]) = 0;

 static const char* appName();
 static CommunicatorPtr communicator();
 // ...
 };
}

The intent of this class is that you specialize and implement the pure virtual method in your derived class. Whatever code Ice::Application run
you would normally place in goes into the method instead. Using , our program looks as follows:main run Ice::Application

C++

#include <Ice/Ice.h>

class MyApplication : virtual public Ice::Application {
public:
 virtual int run(int, char*[]) {

 // Server code here...

 return 0;
 }
};

int
main(int argc, char* argv[])
{
 MyApplication app;
 return app.main(argc, argv);
}

Note that is overloaded: you can pass a string sequence instead of an / pair. This is useful if you need to Application::main argc argv parse
 on the command line. You also can call with an optional file name or an structure.application-specific property settings main InitializationData

If you pass a to , the property settings in this file are overridden by settings in a file identified by the configuration file name main ICE_CONFIG
environment variable (if defined). Property settings supplied on the take precedence over all other settings.command line

https://doc.zeroc.com/display/Ice35/Parsing+Properties
https://doc.zeroc.com/display/Ice35/Parsing+Properties
https://doc.zeroc.com/display/Ice35/Communicator+Initialization
https://doc.zeroc.com/display/Ice35/Using+Configuration+Files
https://doc.zeroc.com/display/Ice35/Using+Configuration+Files#UsingConfigurationFiles-ICE_CONFIG
https://doc.zeroc.com/display/Ice35/Setting+Properties+on+the+Command+Line

Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

1.

2.

3.

4.

5.

6.
7.

The function does the following:Application::main

It installs an exception handler for . If your code fails to handle an Ice exception, prints the Ice::Exception Application::main
exception details on before returning with a non-zero return value.stderr
It installs exception handlers for and . This allows you to terminate your server in response to a const std::string & const char*
fatal error condition by throwing a or a string literal. prints the string on before returning a std::string Application::main stderr
non-zero return value.
It initializes (by calling) and finalizes (by calling) a communicator. You can get access to Ice::initialize Communicator::destroy
the communicator for your server by calling the static member function.communicator()
It scans the argument vector for options that are relevant to the Ice run time and removes any such options. The argument vector that is
passed to your method therefore is free of Ice-related options and only contains options and arguments that are specific to your run
application.
It provides the name of your application via the static member function. The return value from this call is , so you can get appName argv[0]
at from anywhere in your code by calling (which is often necessary for error messages).argv[0] Ice::Application::appName
It installs a that properly destroys the communicator.signal handler
It installs a if the application has not already configured one. The per-process logger uses the value of the per-process logger Ice.

 property as a prefix for its messages and sends its output to the standard error channel. An application can also specify an ProgramName alt
.ernate logger

Using ensures that your program properly finalizes the Ice run time, whether your server terminates normally or in response to Ice::Application
an exception or signal. We recommend that all your programs use this class; doing so makes your life easier. In addition, also Ice::Application
provides features for signal handling and configuration that you do not have to implement yourself when you use this class.

Using on the Client SideIce::Application

You can use for your clients as well: simply implement a class that derives from and place the client Ice::Application Ice::Application
code into its method. The advantage of this approach is the same as for the server side: ensures that the communicator is run Ice::Application
destroyed correctly even in the presence of exceptions.

Catching Signals in C++

The simple server we developed in had no way to shut down cleanly: we simply interrupted the server from the command line Hello World Application
to force it to exit. Terminating a server in this fashion is unacceptable for many real-life server applications: typically, the server has to perform some
cleanup work before terminating, such as flushing database buffers or closing network connections. This is particularly important on receipt of a
signal or keyboard interrupt to prevent possible corruption of database files or other persistent data.

To make it easier to deal with signals, encapsulates the platform-independent provided by the class Ice::Application signal handling capabilities
. This allows you to cleanly shut down on receipt of a signal and to use the same source code regardless of the IceUtil::CtrlCHandler

underlying operating system and threading package:

C++

namespace Ice {
 class Application : /* ... */ {
 public:
 // ...
 static void destroyOnInterrupt();
 static void shutdownOnInterrupt();
 static void ignoreInterrupt();
 static void callbackOnInterrupt();
 static void holdInterrupt();
 static void releaseInterrupt();
 static bool interrupted();

 virtual void interruptCallback(int);
 };
}

You can use under both Windows and Unix: for Unix, the member functions control the behavior of your application for , Ice::Application SIGINT
, and ; for Windows, the member functions control the behavior of your application for , , SIGHUP SIGTERM CTRL_C_EVENT CTRL_BREAK_EVENT CTRL

, , and ._CLOSE_EVENT CTRL_LOGOFF_EVENT CTRL_SHUTDOWN_EVENT

The functions behave as follows:

destroyOnInterrupt
This function creates an that destroys the communicator when one of the monitored signals is raised. This is IceUtil::CtrlCHandler
the default behavior.

https://doc.zeroc.com/pages/viewpage.action?pageId=14680295
https://doc.zeroc.com/display/Ice35/The+Per-Process+Logger
https://doc.zeroc.com/display/Ice35/Command-Line+Parsing+and+Initialization#CommandLineParsingandInitialization-Ice.ProgramName
https://doc.zeroc.com/display/Ice35/Command-Line+Parsing+and+Initialization#CommandLineParsingandInitialization-Ice.ProgramName
https://doc.zeroc.com/display/Ice35/Logger+Facility
https://doc.zeroc.com/display/Ice35/Logger+Facility
https://doc.zeroc.com/display/Ice35/Hello+World+Application
https://doc.zeroc.com/pages/viewpage.action?pageId=14680295

Ice 3.5.1 Documentation

5 Copyright © 2017, ZeroC, Inc.

shutdownOnInterrupt
This function creates an that shuts down the communicator when one of the monitored signals is raised.IceUtil::CtrlCHandler

ignoreInterrupt
This function causes signals to be ignored.

callbackOnInterrupt
This function configures to invoke when a signal occurs, thereby giving the subclass Ice::Application interruptCallback
responsibility for handling the signal. Note that if the signal handler needs to terminate the program, you must call (instead of). _exit exit
This prevents global destructors from running which, depending on the activities of other threads in the program, could cause deadlock or
assertion failures.

holdInterrupt
This function causes signals to be held.

releaseInterrupt
This function restores signal delivery to the previous disposition. Any signal that arrives after was called is delivered when holdInterrupt
you call .releaseInterrupt

interrupted
This function returns if a signal caused the communicator to shut down, otherwise. This allows us to distinguish intentional true false
shutdown from a forced shutdown that was caused by a signal. This is useful, for example, for logging purposes.

interruptCallback
A subclass overrides this function to respond to signals. The Ice run time may call this function concurrently with any other thread. If the
function raises an exception, the Ice run time prints a warning on and ignores the exception.cerr

By default, behaves as if was invoked, therefore our server function requires no change to Ice::Application destroyOnInterrupt main
ensure that the program terminates cleanly on receipt of a signal. (You can disable the signal-handling functionality of by Ice::Application
passing the enumerator to the constructor. In that case, signals retain their default behavior, that is, terminate the process.) NoSignalHandling
However, we add a diagnostic to report the occurrence of a signal, so our function now looks like:main

C++

#include <Ice/Ice.h>

class MyApplication : virtual public Ice::Application {
public:
 virtual int run(int, char*[]) {

 // Server code here...

 if (interrupted())
 cerr << appName() << ": terminating" << endl;

 return 0;
 }
};

int
main(int argc, char* argv[])
{
 MyApplication app;
 return app.main(argc, argv);
}

Note that, if your server is interrupted by a signal, the Ice run time waits for all currently executing operations to finish. This means that an operation
that updates persistent state cannot be interrupted in the middle of what it was doing and cause partial update problems.

Under Unix, if you handle signals with your own handler (by deriving a subclass from and calling), Ice::Application callbackOnInterrupt
the handler is invoked synchronously from a separate thread. This means that the handler can safely call into the Ice run time or make system calls
that are not async-signal-safe without fear of deadlock or data corruption. Note that blocks delivery of , , and Ice::Application SIGINT SIGHUP SI

. If your application calls , this means that the child process will also ignore these signals; if you need the default behavior of these GTERM exec
signals in the 'd process, you must explicitly reset them to before calling .exec SIG_DFL exec

Ice::Application and Properties

Ice 3.5.1 Documentation

6 Copyright © 2017, ZeroC, Inc.

Apart from the functionality shown in this section, also takes care of initializing the Ice run time with property values. Ice::Application Properties
allow you to configure the run time in various ways. For example, you can use properties to control things such as the thread pool size or port number
for a server.

Limitations of Ice::Application

Ice::Application is a singleton class that creates a single communicator. If you are using multiple communicators, you cannot use Ice::
. Instead, you must structure your code as we saw in (taking care to always destroy the communicators).Application Hello World Application

The ClassIce::Service
The class is very convenient for general use by Ice client and server applications. In some cases, however, an application may Ice::Application
need to run at the system level as a Unix daemon or Windows service. For these situations, Ice includes , a singleton class that is Ice::Service
comparable to but also encapsulates the low-level, platform-specific initialization and shutdown procedures common to system Ice::Application
services. The class is defined as follows:Ice::Service

https://doc.zeroc.com/display/Ice35/Properties+and+Configuration
https://doc.zeroc.com/display/Ice35/Hello+World+Application

Ice 3.5.1 Documentation

7 Copyright © 2017, ZeroC, Inc.

C++

namespace Ice {
 class Service {
 public:
 Service();

 virtual bool shutdown();
 virtual void interrupt();

 int main(int& argc, char* argv[],
 const Ice::InitializationData& = Ice::InitializationData());
 int main(Ice::StringSeq& args,
 const Ice::InitializationData& = Ice::InitializationData());

 Ice::CommunicatorPtr communicator() const;

 static Service* instance();

 bool service() const;
 std::string name() const;
 bool checkSystem() const;

 int run(int& argc, char* argv[], const Ice::InitializationData&);

#ifdef _WIN32
 int main(int& argc, wchar_t* argv[], const InitializationData& = InitializationData());

 void configureService(const std::string& name);
#else
 void configureDaemon(bool changeDir, bool closeFiles, const std::string& pidFile);
#endif

 virtual void handleInterrupt(int);

 protected:
 virtual bool start(int argc, char* argv[], int& status) = 0;
 virtual void waitForShutdown();
 virtual bool stop();
 virtual Ice::CommunicatorPtr initializeCommunicator(
 int& argc, char* argv[],
 const Ice::InitializationData&);

 virtual void syserror(const std::string& msg);
 virtual void error(const std::string& msg);
 virtual void warning(const std::string& msg);
 virtual void trace(const std::string& msg);
 virtual void print(const std::string& msg);

 void enableInterrupt();
 void disableInterrupt();

 // ...
 };
}

At a minimum, an Ice application that uses the class must define a subclass and override the member function, which is Ice::Service start
where the service must perform its startup activities, such as processing command-line arguments, creating an object adapter, and registering
servants. The application's function must instantiate the subclass and typically invokes its member function, passing the program's main main
argument vector as parameters. The example below illustrates a minimal subclass:Ice::Service

Ice 3.5.1 Documentation

8 Copyright © 2017, ZeroC, Inc.

1.

2.

3.

1.
2.

3.

4.
5.
6.
7.

C++

#include <Ice/Service.h>

class MyService : public Ice::Service {
protected:
 virtual bool start(int, char*[], int&);
private:
 Ice::ObjectAdapterPtr _adapter;
};

bool
MyService::start(int argc, char* argv[], int& status)
{
 _adapter = communicator()->createObjectAdapter("MyAdapter");
 _adapter->addWithUUID(new MyServantI);
 _adapter->activate();
 status = EXIT_SUCCESS;
 return true;
}

int
main(int argc, char* argv[])
{
 MyService svc;
 return svc.main(argc, argv);
}

The member function performs the following sequence of tasks:Service::main

Scans the argument vector for reserved options that indicate whether the program should run as a system service and removes these
options from the argument vector (is adjusted accordingly). Additional reserved options are supported for administrative tasks.argc
Configures the program for running as a system service (if necessary) by invoking or , as configureService configureDaemon
appropriate for the platform.
Invokes the member function and returns its result.run

Note that, as for , is overloaded to accept a string sequence instead of an / pair. This is useful if Application::main Service::main argc argv
you need to on the command line.parse application-specific property settings

The member function executes the service in the steps shown below:Service::run

Installs a .signal handler
Invokes the member function to obtain a communicator. The communicator instance can be accessed using initializeCommunicator
the member function.communicator
Invokes the member function. If returns to indicate failure, destroys the communicator and returns immediately start start false run
using the exit status provided in .status
Invokes the member function, which should block until is invoked.waitForShutdown shutdown
Invokes the member function. If returns , considers the application to have terminated successfully.stop stop true run
Destroys the communicator.
Gracefully terminates the system service (if necessary).

If an unhandled exception is caught by , a descriptive message is logged, the communicator is destroyed and the service is Service::run
terminated.

Ice::Service Member Functions

The virtual member functions in represent the points at which a subclass can intercept the service activities. All of the virtual member Ice::Service
functions (except) have default implementations.start

For maximum portability, we strongly recommend that all initialization tasks be performed in the member function and not in the start
global function. For example, allocating resources in can cause program instability for .main main Unix daemons

https://doc.zeroc.com/display/Ice35/Parsing+Properties
https://doc.zeroc.com/pages/viewpage.action?pageId=14680295

Ice 3.5.1 Documentation

9 Copyright © 2017, ZeroC, Inc.

void handleInterrupt(int sig)
Invoked by the when a signal occurs. The default implementation ignores the signal if it represents a logoff event and the CtrlCHandler Ic

 property is set to a value larger than zero, otherwise it invokes the member function.e.Nohup interrupt

Ice::CommunicatorPtr initializeCommunicator(int & argc, char * argv[],
 const Ice::InitializationData & data)
Initializes a communicator. The default implementation invokes and passes the given arguments.Ice::initialize

void interrupt()
Invoked by the signal handler to indicate a signal was received. The default implementation invokes the member function.shutdown

bool shutdown()
Causes the service to begin the shutdown process. The default implementation invokes on the communicator. The subclass shutdown
must return if shutdown was started successfully, and otherwise.true false

bool start(int argc, char * argv[], int & status)
Allows the subclass to perform its startup activities, such as scanning the provided argument vector for recognized command-line options,
creating an object adapter, and registering servants. The subclass must return if startup was successful, and otherwise. The true false
subclass can set an exit status via the parameter. This status is returned by .status main

bool stop()
Allows the subclass to clean up prior to termination. The default implementation does nothing but return . The subclass must return true true
if the service has stopped successfully, and otherwise.false

void syserror(const std::string & msg)
void error(const std::string & msg)
void warning(const std::string & msg)
void trace(const std::string & msg)
void print(const std::string & msg)
Convenience functions for logging messages to the communicator's . The member function includes a description of the logger syserror
system's current error code. You can also log messages to these functions using utility classes similar to the : C++ Logger Utility Classes
these classes are , , , and , all nested in the ServiceSysError ServiceError ServiceWarning ServiceTrace ServicePrint
Service class.

void waitForShutdown()
Waits indefinitely for the service to shut down. The default implementation invokes on the communicator.waitForShutdown

The non-virtual member functions shown in the class definition are described below:

bool checkSystem() const
Returns true if the operating system supports Windows services or Unix daemons. This function returns false on Windows 95/98/ME.

Ice::CommunicatorPtr communicator() const
Returns the communicator used by the service, as created by .initializeCommunicator

void configureDaemon(bool chdir, bool close, const std::string & pidFile)
Configures the program to run as a Unix daemon. The parameter determines whether the daemon changes its working directory to chdir
the root directory. The parameter determines whether the daemon closes unnecessary file descriptors (i.e., stdin, stdout, etc.). If a close
non-empty string is provided in the parameter, the daemon writes its process ID to the given file.pidFile

void configureService(const std::string & name)
Configures the program to run as a Windows service with the given name.

void disableInterrupt()
Disables the signal handling behavior in . When disabled, signals are ignored.Ice::Service

void enableInterrupt()
Enables the signal handling behavior in . When enabled, the occurrence of a signal causes the Ice::Service handleInterrupt
member function to be invoked.

static Service * instance()
Returns the singleton instance.Ice::Service

int main(int & argc, char * argv[],
 const Ice::InitializationData & data = Ice::InitializationData())
int main(Ice::StringSeq& args,
 const Ice::InitializationData& = Ice::InitializationData());
int main(int & argc, wchar_t * argv[],
 const Ice::InitializationData & data = Ice::InitializationData())
The primary entry point of the class. The tasks performed by this function are described earlier in this section. The function Ice::Service
returns for success, for failure. For Windows, this function is overloaded to allow you to pass a EXIT_SUCCESS EXIT_FAILURE wchar_t
argument vector.

https://doc.zeroc.com/display/Ice35/Logger+Facility
https://doc.zeroc.com/pages/viewpage.action?pageId=14680246

Ice 3.5.1 Documentation

10 Copyright © 2017, ZeroC, Inc.

std::string name() const
Returns the name of the service. If the program is running as a Windows service, the return value is the Windows service name, otherwise it
returns the value of .argv[0]

int run(int & argc, char * argv[], const Ice::InitializationData & data)
Alternative entry point for applications that prefer a different style of service configuration. The program must invoke configureService
(Windows) or (Unix) in order to run as a service. The tasks performed by this function were described . The configureDaemon earlier
function normally returns or , but the method can also supply a different value via its EXIT_SUCCESS EXIT_FAILURE start status
argument.

bool service() const
Returns true if the program is running as a Windows service or Unix daemon, or false otherwise.

Unix Daemons

On Unix platforms, passing causes your program to run as a daemon. When this option is present, performs the following --daemon Ice::Service
additional actions:

Creates a background child process in which Service::main performs its tasks. The foreground process does not terminate until the child

process has successfully invoked the start member function. This behavior avoids the uncertainty often associated with starting a daemon

from a shell script by ensuring that the command invocation does not complete until the daemon is ready to receive requests.
Changes the current working directory of the child process to the root directory, unless is specified.--nochdir
Closes all file descriptors, unless is specified. The standard input (stdin) channel is closed and reopened to . --noclose /dev/null
Likewise, the standard output (stdout) and standard error (stderr) channels are also closed and reopened to unless /dev/null Ice.

 or are defined, respectively, in which case those channels use the designated log files.StdOut Ice.StdErr

The following additional command-line options can be specified in conjunction with the option--daemon :

--pidfile FILE
This option writes the process ID of the service into the specified .FILE

--noclose
Prevents from closing unnecessary file descriptors. This can be useful during debugging and diagnosis because it provides Ice::Service
access to the output from the daemon's standard output and standard error.

--nochdir
Prevents from changing the current working directory.Ice::Service

All of these options are removed from the argument vector that is passed to the member function.start

Windows Services

On Windows, recognizes the following command-line options:Ice::Service

--service NAME
Run as a Windows service named , which must already be installed. This option is removed from the argument vector that is passed to NAME
the member function.start

Installing and configuring a Windows service is outside the scope of the class. Ice includes a for installing its services which Ice::Service utility
you can use as a model for your own applications.

The class supports the Windows service control codes and . Upon Ice::Service SERVICE_CONTROL_INTERROGATE SERVICE_CONTROL_STOP
receipt of , invokes the member function.SERVICE_CONTROL_STOP Ice::Service shutdown

The file descriptors are not closed until after the communicator is initialized, meaning standard input, standard output, and
standard error are available for use during this time. For example, the IceSSL plug-in may need to prompt for a passphrase on
standard input, or Ice may print the child's process id on standard output if the property is set.Ice.PrintProcessId

We strongly recommend that you perform all initialization tasks in your service's member function, and not in the global start main
function. This is especially important for process-specific resources such as file descriptors, threads, and mutexes, which can be affected
by the use of the system call in . For example, any files opened in are automatically closed by fork Ice::Service main Ice::Service
and therefore unusable in your service, unless the daemon is started with the option.--noclose

https://doc.zeroc.com/display/Ice35/Ice+Miscellaneous+Properties#IceMiscellaneousProperties-Ice.StdOut
https://doc.zeroc.com/display/Ice35/Ice+Miscellaneous+Properties#IceMiscellaneousProperties-Ice.StdOut
https://doc.zeroc.com/display/Ice35/Ice+Miscellaneous+Properties#IceMiscellaneousProperties-Ice.StdErr
https://doc.zeroc.com/display/Ice35/Windows+Services

Ice 3.5.1 Documentation

11 Copyright © 2017, ZeroC, Inc.

Ice::Service Logging Considerations

A service that uses a has several ways of configuring it:custom logger

as a ,process-wide logger
in the argument that is passed to ,InitializationData main
by overriding the member function.initializeCommunicator

On Windows, installs its own logger that uses the Windows event log if no custom logger is defined. The source Ice::Service Application
name for the event log is the service's name unless a different value is specified using the property .Ice.EventLog.Source

On Unix, the default Ice logger (which logs to the standard error output) is used when no other logger is configured. For daemons, this is not
appropriate because the output will be lost. To change this, you can either implement a custom logger or set the property, which Ice.UseSyslog
selects a logger implementation that logs to the facility. Alternatively, you can set the property to write log messages to a file.syslog Ice.LogFile

Note that may encounter errors before the communicator is initialized. In this situation, uses its default logger Ice::Service Ice::Service
unless a process-wide logger is configured. Therefore, even if a failing service is configured to use a different logger implementation, you may find
useful diagnostic information in the event log (on Windows) or sent to standard error (on Unix).Application

See Also

Hello World Application
Properties and Configuration
Communicator Initialization
Logger Facility
Portable Signal Handling in C++
Windows Services

https://doc.zeroc.com/display/Ice35/Custom+Loggers
https://doc.zeroc.com/display/Ice35/The+Per-Process+Logger
https://doc.zeroc.com/display/Ice35/Communicator+Initialization
https://doc.zeroc.com/display/Ice35/Ice+Miscellaneous+Properties#IceMiscellaneousProperties-Ice.EventLog.Source
https://doc.zeroc.com/display/Ice35/Ice+Miscellaneous+Properties#IceMiscellaneousProperties-Ice.UseSyslog
https://doc.zeroc.com/display/Ice35/Ice+Miscellaneous+Properties#IceMiscellaneousProperties-Ice.LogFile
https://doc.zeroc.com/display/Ice35/Hello+World+Application
https://doc.zeroc.com/display/Ice35/Properties+and+Configuration
https://doc.zeroc.com/display/Ice35/Communicator+Initialization
https://doc.zeroc.com/display/Ice35/Logger+Facility
https://doc.zeroc.com/pages/viewpage.action?pageId=14680295
https://doc.zeroc.com/display/Ice35/Windows+Services

	The Server-Side main Function in C++

