
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

1.
2.
3.
4.

Object Incarnation in C++
Having created a servant class such as the rudimentary , you can instantiate the class to create a concrete servant that can receive classNodeI
invocations from a client. However, merely instantiating a servant class is insufficient to incarnate an object. Specifically, to provide an
implementation of an Ice object, you must follow the following steps:

Instantiate a servant class.
Create an identity for the Ice object incarnated by the servant.
Inform the Ice run time of the existence of the servant.
Pass a proxy for the object to a client so the client can reach it.

On this page:

Instantiating a C++ Servant
Creating an Identity in C++
Activating a C++ Servant

Servant Life Time and Reference Counts
UUIDs as Identities in C++
Creating Proxies in C++

Proxies and Servant Activation in C++
Direct Proxy Creation in C++

Instantiating a C++ Servant
Instantiating a servant means to allocate an instance on the heap:

C++

NodePtr servant = new NodeI("Fred");

This code creates a new instance and assigns its address to a smart pointer of type . This works because is NodeI on the heap NodePtr NodeI
derived from , so a smart pointer of type can also look after an instance of type . However, if we want to invoke a member Node NodePtr NodeI
function of the derived class at this point, we have a problem: we cannot access member functions of the derived class through a NodeI NodeI Node

 smart pointer, only member functions of base class. (The C++ type rules prevent us from accessing a member of a derived class through a Ptr Node
pointer to a base class.) To get around this, we can modify the code as follows:

C++

typedef IceUtil::Handle<NodeI> NodeIPtr;
NodeIPtr servant = new NodeI("Fred");

This code makes use of the by defining as a smart pointer to instances. Whether you use a smart pointer of smart pointer template NodeIPtr NodeI
type or depends solely on whether you want to invoke a member function of the derived class; if you only want to invoke NodePtr NodeIPtr NodeI
member functions that are defined in the skeleton base class, it is sufficient to use a and you need not define the type.Node NodePtr NodeIPtr

Whether you use or , the advantages of using a smart pointer class should be obvious from the : they NodePtr NodeIPtr smart pointer discussion
make it impossible to accidentally leak memory.

Creating an Identity in C++
Each Ice object requires an identity. That identity must be unique for all servants using the same object adapter.

An Ice object identity is a structure with the following Slice definition:

The Ice object model assumes that all objects (regardless of their adapter) have a .globally unique identity

https://doc.zeroc.com/pages/viewpage.action?pageId=14680652#ServerSideC++MappingforInterfaces-servant
https://doc.zeroc.com/display/Ice35/Smart+Pointers+for+Classes#SmartPointersforClasses-PreventingStack-AllocationofClassInstances
https://doc.zeroc.com/display/Ice35/Smart+Pointers+for+Classes
https://doc.zeroc.com/display/Ice35/Smart+Pointers+for+Classes
https://doc.zeroc.com/display/Ice35/Object+Life+Cycle

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

1.

2.
3.

Slice

module Ice {
 struct Identity {
 string name;
 string category;
 };
 // ...
};

The full identity of an object is the combination of both the and fields of the structure. For now, we will leave the name category Identity category
field as the empty string and simply use the field. (The field is most often used in conjunction with .)name category servant locators

To create an identity, we simply assign a key that identifies the servant to the field of the structure:name Identity

C++

Ice::Identity id;
id.name = "Fred"; // Not unique, but good enough for now

Activating a C++ Servant
Merely creating a servant instance does nothing: the Ice run time becomes aware of the existence of a servant only once you explicitly tell the object
adapter about the servant. To activate a servant, you invoke the operation on the object adapter. Assuming that we have access to the object add
adapter in the variable, we can write:_adapter

C++

_adapter->add(servant, id);

Note the two arguments to : the smart pointer to the servant and the object identity. Calling on the object adapter adds the servant pointer add add
and the servant's identity to the adapter's servant map and links the proxy for an Ice object to the correct servant instance in the server's memory as
follows:

The proxy for an Ice object, apart from addressing information, contains the identity of the Ice object. When a client invokes an operation,
the object identity is sent with the request to the server.
The object adapter receives the request, retrieves the identity, and uses the identity as an index into the servant map.
If a servant with that identity is active, the object adapter retrieves the servant pointer from the servant map and dispatches the incoming
request into the correct member function on the servant.

Assuming that the object adapter is in the , client requests are dispatched to the servant as soon as you call .active state add

Servant Life Time and Reference Counts

Putting the preceding points together, we can write a simple function that instantiates and activates one of our servants. For this example, we NodeI
use a simple helper function called that creates and activates a servant with a given identity:activateServant

https://doc.zeroc.com/display/Ice35/Servant+Locators
https://doc.zeroc.com/display/Ice35/Object+Adapter+States

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

C++

void
activateServant(const string& name)
{
 NodePtr servant = new NodeI(name); // Refcount == 1
 Ice::Identity id;
 id.name = name;
 _adapter->add(servant, id); // Refcount == 2
} // Refcount == 1

Note that we create the servant on the heap and that, once returns, we lose the last remaining handle to the servant (because activateServant
the variable goes out of scope). The question is, what happens to the heap-allocated servant instance? The answer lies in the smart servant
pointer semantics:

When the new servant is instantiated, its reference count is initialized to 0.
Assigning the servant's address to the smart pointer increments the servant's reference count to 1.servant
Calling passes the smart pointer to the object adapter which keeps a copy of the handle internally. This increments the add servant
reference count of the servant to 2.
When returns, the destructor of the variable decrements the reference count of the servant to 1.activateServant servant

The net effect is that the servant is retained on the heap with a reference count of 1 for as long as the servant is in the servant map of its object
adapter. (If we deactivate the servant, that is, remove it from the servant map, the reference count drops to zero and the memory occupied by the
servant is reclaimed; we discuss these life cycle issues in .)Object Life Cycle

UUIDs as Identities in C++
The Ice object model assumes that object identities are globally unique. One way of ensuring that uniqueness is to use UUIDs (Universally Unique
Identifiers) as identities. The namespace contains a to create such identities:IceUtil helper function

C++

#include <IceUtil/UUID.h>
#include <iostream>

using namespace std;

int
main()
{
 cout << IceUtil::generateUUID() << endl;
}

When executed, this program prints a unique string such as . Each call to creates a 5029a22c-e333-4f87-86b1-cd5e0fcce509 generateUUID
string that differs from all previous ones.

You can use a UUID such as this to create object identities. For convenience, the object adapter has an operation that generates a addWithUUID
UUID and adds a servant to the servant map in a single step. Using this operation, we can rewrite the code shown like this:earlier

C++

void
activateServant(const string& name)
{
 NodePtr servant = new NodeI(name);
 _adapter->addWithUUID(servant);
}

https://doc.zeroc.com/display/Ice35/Object+Life+Cycle
https://doc.zeroc.com/pages/viewpage.action?pageId=14680645

Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

Creating Proxies in C++
Once we have activated a servant for an Ice object, the server can process incoming client requests for that object. However, clients can only access
the object once they hold a proxy for the object. If a client knows the server's address details and the object identity, it can create a proxy from a
string, as we saw in our first example in . However, creation of proxies by the client in this manner is usually only done to Hello World Application
allow the client access to initial objects for bootstrapping. Once the client has an initial proxy, it typically obtains further proxies by invoking operations.

The object adapter contains all the details that make up the information in a proxy: the addressing and protocol information, and the object identity.
The Ice run time offers a number of ways to create proxies. Once created, you can pass a proxy to the client as the return value or as an out-
parameter of an operation invocation.

Proxies and Servant Activation in C++

The and servant activation operations on the object adapter return a proxy for the corresponding Ice object. This means we can add addWithUUID
write:

C++

typedef IceUtil::Handle<NodeI> NodeIPtr;
NodeIPtr servant = new NodeI(name);
NodePrx proxy = NodePrx::uncheckedCast(_adapter->addWithUUID(servant));

// Pass proxy to client...

Here, both activates the servant and returns a proxy for the Ice object incarnated by that servant in a single step.addWithUUID

Note that we need to use an here because returns a proxy of type .uncheckedCast addWithUUID Ice::ObjectPrx

Direct Proxy Creation in C++

The object adapter offers an operation to create a proxy for a given identity:

Slice

module Ice {
 local interface ObjectAdapter {
 Object* createProxy(Identity id);
 // ...
 };
};

Note that creates a proxy for a given identity whether a servant is activated with that identity or not. In other words, proxies have a life createProxy
cycle that is quite independent from the life cycle of servants:

C++

Ice::Identity id;
id.name = IceUtil::generateUUID();
ObjectPrx o = _adapter->createProxy(id);

This creates a proxy for an Ice object with the identity returned by . Obviously, no servant yet exists for that object so, if we return the generateUUID
proxy to a client and the client invokes an operation on the proxy, the client will receive an . (We examine these life ObjectNotExistException
cycle issues in more detail in .)Object Life Cycle

See Also

Hello World Application
Object Adapter States
Servant Locators
Object Life Cycle

https://doc.zeroc.com/display/Ice35/Hello+World+Application
https://doc.zeroc.com/pages/viewpage.action?pageId=14680645
https://doc.zeroc.com/display/Ice35/Object+Life+Cycle
https://doc.zeroc.com/display/Ice35/Hello+World+Application
https://doc.zeroc.com/display/Ice35/Object+Adapter+States
https://doc.zeroc.com/display/Ice35/Servant+Locators
https://doc.zeroc.com/display/Ice35/Object+Life+Cycle

Ice 3.5.1 Documentation

5 Copyright © 2017, ZeroC, Inc.

The C++ generateUUID Function

https://doc.zeroc.com/pages/viewpage.action?pageId=14680645

	Object Incarnation in C++

