Ice 3.5.1 Documentation

Simple Example of Class Encoding

On this page:

® Sample Class Definitions
® Class Encoding version 1.0
® Class Encoding version 1.1
O Class Encoding in the Sliced Format
O Class Encoding in the Compact Format
O Class Encoding in the Compact Format with Compact Type IDs

Sample Class Definitions

We have separately discussed the primary components of the class encoding: slices, references, and type IDs. To make the preceding discussions
more concrete, consider the following class definitions:

Slice

interface Sonel nterface {

void opl();
I
cl ass Base {
int baselnt;
voi d op2();

string baseString;

3

class Derived extends Base inplenents Sonelnterface {
bool derivedBool ;
string derivedString;
voi d op3();
doubl e deri vedDoubl e;
I

Note that Base and Der i ved have operations, and that Der i ved also implements the interface Sonel nt er f ace. Because marshaling of classes is
concerned with state, not behavior, the operations op1, op2, and op3 are simply ignored during marshaling and the on-the-wire representation is as
if the classes had been defined as follows:

Slice

cl ass Base {
int baselnt;
string baseString;

1

class Derived extends Base {
bool derivedBool ;
string derivedString;
doubl e deri vedDoubl e;

I

Suppose the sender marshals two instances of Der i ved (for example, as two in-parameters in the same request) with these member values:

First instance:

Member Type Value Marshaled size (in bytes)
basel nt int 99 4
baseString string "Hello" 6

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice35/Basic+Data+Encoding#BasicDataEncoding-s
https://doc.zeroc.com/display/Ice35/Data+Encoding+for+Classes
https://doc.zeroc.com/display/Ice35/Data+Encoding+for+Class+Type+IDs

Ice 3.5.1 Documentation

deri vedBool bool true 1
derivedString string "Wrld!" |7

derivedDoubl e | double 3.14 8

Second instance:

Member Type Value Marshaled size (in bytes)
basel nt int 115 4
baseString string "Cave" 5
deri vedBool bool fal se 1

derivedString string "Canenl 6

deri vedDoubl e double 6.32 8

We describe how to marshal these instances using versions 1.0 and 1.1 of the encoding in separate sections below.

Class Encoding version 1.0

The sender arbitrarily assigns a non-zero identity to each instance. Typically, the sender will simply consecutively number the instances starting at 1.
For this example, assume that the two instances have the identities 1 and 2. The marshaled representation for the two instances (assuming that they
are marshaled immediately following each other) is shown below:

Marshaled value Size in bytes Type Byte offset

1 (identity) 4 int 0

0 (marker for class type ID) 1 bool 4
"::Derived" (class type ID) 10 string 5
20 (byte count for slice) 4 int 15
1 (deri vedBool ) 1 bool 19
"Worl d!" (derivedString) 7 string 20
3. 14 (deri vedDoubl e) 8 doubl e | 27
0 (marker for class type ID) 1 bool 35
"::Base" (type ID) 7 string 36
14 (byte count for slice) 4 int 43
99 (basel nt) 4 int 47
"Hel | 0" (baseString) 6 string 51
0 (marker for class type ID) 1 bool 57
"::lce:: bject" (classtype ID) 14 string 58
5 (byte count for slice) 4 int 72
0 (number of dictionary entries) 1 si ze 76
2 (identity) 4 int 77
1 (marker for class type ID) 1 bool 81
1 (class type ID) 1 si ze 82
19 (byte count for slice) 4 int 83
0 (deri vedBool ) 1 bool 87
"Canent' (derivedString) 6 string 88
6. 32 (deri vedDoubl e) 8 double 94
1 (marker for class type ID) 1 bool 102
2 (class type ID) 1 si ze 103

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice35/Data+Encoding+for+Classes

13 (byte count for slice) 4
115 (basel nt) 4
"Cave" (baseString) 5
1 (marker for class type ID) 1
3 (class type ID) 1
5 (byte count for slice) 4
0 (number of dictionary entries) 1

Ice 3.5.1 Documentation

int
int
string
bool

si ze
int

si ze

104

108

112

117

118

119

123

Note that, because classes (like exceptions) are sent as a sequence of slices, the receiver of a class can slice off any derived parts of a class it does
not understand. Also note that (as shown in the above table) each class instance contains three slices. The third slice is for the type : : | ce: : Obj ect
, which is the base type of all classes. The class type ID : : | ce: : Obj ect has the number 3 in this example because it is the third distinct type ID

that is marshaled by the sender. (See entries at byte offsets 58 and 118 in the above table.) All class instances have this final slice of type : : | ce: :

oj ect .

Marshaling a separate slice for : : | ce: : Obj ect dates back to Ice versions 1.3 and earlier. In those versions, classes carried a facet map that was

marshaled as if it were defined as follows:

Slice

nmodul e Ice {
class Object;

di ctionary<string, Object> FacetMap;

class Object {

Facet Map facets; // No longer exists

}
3

As of Ice version 1.4, this facet map is always empty, that is, the count of entries for the dictionary that is marshaled in the : : | ce: : Obj ect slice is
always zero. If a receiver receives a class instance with a non-empty facet map, it must throw a Mar shal Except i on.

Note that if a class has no data members, a type ID and slice for that class is still marshaled. The byte count of the slice will be 4 in this case,

indicating that the slice contains no data.

Class Encoding version 1.1

A leading size value of 1 marks the beginning of an instance, followed by one or more slices.

Class Encoding in the Sliced Format

The marshaled representation for the two instances (assuming that they are marshaled immediately following each other) in the sliced format is

shown below:

Marshaled value

1 (instance marker)

17 (slice flags: string type ID, size is present)
"::Derived" (type ID - assigned index 1)

20 (byte count for slice)

1 (deri vedBool )

"Worl d!" (derivedString)

3. 14 (deri vedDoubl e)

49 (slice flags: string type ID, size is present, last slice)
"::Base" (type ID - assigned index 2)

14 (byte count for slice)

Size in bytes

Type
si ze
byt e
string
int
bool
string
doubl e
byt e
string

int

Byte offset

0
1

12
16
17
24
32
33

40

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice35/Data+Encoding+for+Exceptions
https://doc.zeroc.com/display/Ice35/Basic+Data+Encoding#BasicDataEncoding-slice
https://doc.zeroc.com/display/Ice35/Type+IDs
https://doc.zeroc.com/display/Ice35/Basic+Data+Encoding#BasicDataEncoding-siz
https://doc.zeroc.com/display/Ice35/Basic+Data+Encoding#BasicDataEncoding-sliz
https://doc.zeroc.com/display/Ice35/Understanding+Objects+and+Exceptions

99 (basel nt)
"Hel | 0" (baseString)

1 (instance marker)

18 (slice flags: index type ID, size is present)

1 (type ID index for Der i ved)
19 (byte count for slice)

0 (deri vedBool )

"Canent' (derivedString)

6. 32 (deri vedDoubl e)

50 (slice flags: index type ID, size is present, last slice)

2 (type ID index for Base)
13 (byte count for slice)
115 (basel nt)

"Cave" (baseString)

Ice 3.5.1 Documentation

int 44
string 48
si ze 54
byt e 55
si ze 56
int 57
bool 61
string 62
doubl e 68
byte 76
si ze 77
int 78
int 82
string 86

The sliced format allows the receiver of a class to slice off any derived parts of a class it does not understand, as in version 1.0 of the encoding.
Although the sliced format provides equivalent functionality to that of version 1.0, it is significantly more efficient, requiring only 91 bytes to encode
our example compared to the 124 bytes required by version 1.0. We could reduce the encoded size even further, while still retaining the ability to

slice off unknown types, by using compact type IDs.

Note that if a class has no data members, a type ID and slice for that class is still marshaled. The byte count of the slice will be 4 in this case,

indicating that the slice contains no data.

Class Encoding in the Compact Format

The marshaled representation for the two instances (assuming that they are marshaled immediately following each other) in the compact format is

shown below:

Marshaled value

1 (instance marker)

1 (slice flags: string type ID)

"::Derived" (type ID - assigned index 1) 10

1 (deri vedBool )

"Worl d!'" (derivedString)
3. 14 (deri vedDoubl e)

32 (slice flags: last slice)

99 (basel nt)

"Hel | 0" (baseString)

1 (instance marker)

2 (slice flags: index type ID)

1 (type ID index for Der i ved)
0 (deri vedBool )

" Canent' (derivedString)

6. 32 (deri vedDoubl e)

32 (slice flags: last slice)

115 (basel nt)

"Cave" (baseString)

1

1

1

7

Type Byte offset

si ze 0

byt e 1

string 2

bool 12
string 13
doubl e ' 20
byte 28
int 29
string | 33
si ze 39
byte 40
si ze 41
bool 42
string 43
doubl e ' 49
byt e 57
int 58
string | 62

In an effort to conserve bandwidth, the compact format omits certain details that would allow a receiver to slice off derived parts of a class, such as
the slice size and the type IDs for base classes. The result is an encoding that requires only 67 bytes for the two sample instances.

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice35/Data+Encoding+for+Class+Type+IDs
https://doc.zeroc.com/display/Ice35/Understanding+Objects+and+Exceptions

Ice 3.5.1 Documentation

Note that if a class has no data members, a type ID and slice for that class is still marshaled. The byte count of the slice will be 4 in this case,
indicating that the slice contains no data.

Class Encoding in the Compact Format with Compact Type IDs

Compact type IDs can be used regardless of the sender's chosen format. For the sake of example, we will use compact type IDs together with the
compact format to produce the smallest encoding possible. The Slice definitions below reflect the addition of the compact type IDs:

Slice

interface Sonelnterface {

voi d opl();
b
cl ass Base(10) {
int baselnt;
void op2();

string baseString;

I

class Derived(11l) extends Base inplenents Sonelnterface {
bool derivedBool ;
string derivedString;
voi d op3();
doubl e deri vedDoubl e;
I

We assign the compact type ID 10 to Base and 11 to Der i ved. Note however that assigning a compact type ID to Base does not affect the size of
the encoded data in our example because the compact format omits type IDs altogether for base types.

The marshaled representation for the two instances (assuming that they are marshaled immediately following each other) in the compact format is
shown below:

Marshaled value Size in bytes Type Byte offset
1 (instance marker) 1 si ze 0
3 (slice flags: compact type ID) 1 byt e 1
11 (compact type ID for Deri ved) | 1 si ze 2
1 (deri vedBool ) 1 bool 3
"Worl d!'" (derivedString) 7 string 4
3. 14 (deri vedDoubl e) 8 double 11
32 (slice flags: last slice) 1 byt e 19
99 (basel nt) 4 int 20
"Hel | 0" (baseString) 6 string 24
1 (instance marker) 1 si ze 30
3 (slice flags: compact type ID) 1 byt e 31
11 (compact type ID for Deri ved) | 1 si ze 32
0 (deri vedBool ) 1 bool 33
"Canent' (derivedString) 6 string 34
6. 32 (deri vedDoubl e) 8 doubl e 40
32 (slice flags: last slice) 1 byte 48
115 (basel nt) 4 int 49
"Cave" (baseString) 5 string 53

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice35/Data+Encoding+for+Class+Type+IDs
https://doc.zeroc.com/display/Ice35/Understanding+Objects+and+Exceptions

Ice 3.5.1 Documentation

Substituting a compact type ID for its string equivalent reduces the encoded size for the two instances by
another nine bytes to 58, less than half the size of version 1.0.

See Also

® Data Encoding for Classes

® Data Encoding for Exceptions
® Basic Data Encoding

® Type IDs

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice35/Data+Encoding+for+Classes
https://doc.zeroc.com/display/Ice35/Data+Encoding+for+Exceptions
https://doc.zeroc.com/display/Ice35/Basic+Data+Encoding
https://doc.zeroc.com/display/Ice35/Type+IDs

	Simple Example of Class Encoding

