
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Ice Plug-In Properties
On this page:

Ice.InitPlugins
Ice.Plugin.name.cpp
Ice.Plugin.name.java
Ice.Plugin.name.clr
Ice.Plugin.name
Ice.PluginLoadOrder

Ice.InitPlugins

Synopsis

Ice.InitPlugins=num

Description

If is a value greater than zero, the Ice run time automatically initializes the plug-ins it has loaded. The order in which plug-ins are loaded and num
initialized is determined by . An application may need to set this property to zero in order to Ice.PluginLoadOrder interact directly with a plug-in
after it has been loaded but before it is initialized. In this case, the application must invoke on the plug-in manager to initializePlugins
complete the initialization process. If not defined, the default value is 1.

Ice.Plugin. .cppname

Synopsis

Ice.Plugin. .cpp= [,]: []name path version function args

Description

Defines a C++ to be installed during communicator initialization. The and optional components are used to construct the path plug-in path version
name of a DLL or shared library. If no version is supplied, the Ice version is used. The component is the name of a function with C linkage. function
For example, the entry point would imply a shared library name of on Unix and MyPlugin,35:create libMyPlugin.so.35 MyPlugin35.dll
on Windows. Furthermore, if Ice is built on Windows with debugging, a is automatically appended to the version (for example,).d MyPlugin35d.dll

The function must be declared with external linkage and have the following signature:

C++

<Plugin>* function(const Ice::CommunicatorPtr& communicator,
 const std::string& name,
 const Ice::StringSeq& args);

Note that the function must return a pointer and not a smart pointer. The Ice run time deallocates the object when it unloads the library.

Any arguments that follow the entry point are passed to the entry point function. For example:

Ice.Plugin.MyPlugin.cpp=MyFactory,35:create arg1 arg2

Whitespace separates the arguments, and any arguments that contain whitespace must be enclosed in quotes.

The component may optionally contain a relative or absolute path name, indicated by the presence of a path separator (or). In this case, path / \
the last component of the path is used to construct the version-specific name of the shared library or DLL. Consider this example:

Ice.Plugin.MyPlugin.cpp=./MyFactory,35:create arg1 arg2

https://doc.zeroc.com/display/Ice35/Advanced+Plug-in+Topics#AdvancedPluginTopics-DelayedPlug-inInitialization
https://doc.zeroc.com/display/Ice35/Plug-in+API

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

1.
2.
3.

The use of a relative path means the Ice run time will look in the current working directory for on Unix or onlibMyPlugin.so.35 MyPlugin35.dll
Windows.

If the component contains spaces, the entire entry point must be enclosed in quotes:path

Ice.Plugin.MyPlugin.cpp="C:\Program Files\MyPlugin\MyFactory,35:create" arg1 arg2

If the component does not include a leading path name, Ice delegates to the operating system to locate the shared library or DLL, which path
typically means that the plug-in can reside in any of the directories in your shared library or DLL search path.

Ice.Plugin. .javaname

Synopsis

Ice.Plugin. .java=[:] []name path class args

Description

Defines a Java to be installed during communicator initialization. The specified class must implement the interface. plug-in Ice.PluginFactory
Any arguments that follow the class name are passed to the method. For example:create

Ice.Plugin.MyPlugin.java=MyFactory arg1 arg2

Whitespace separates the arguments, and any arguments that contain whitespace must be enclosed in quotes.

If is specified, it may be the path name of a JAR file or class directory, as shown below:path

Ice.Plugin.MyPlugin.java=MyFactory.jar:MyFactory
Ice.Plugin.MyOtherPlugin.java=/classes:MyOtherFactory

If contains spaces, it must be enclosed in quotes:path

Ice.Plugin.MyPlugin.java="factory classes.jar":MyFactory

If is specified without a path, Ice attempts to load the class using in a well-defined order.class class loaders

Ice.Plugin. .clrname

Synopsis

Ice.Plugin. .clr= : []name assembly class args

Description

Defines a .NET to be installed during communicator initialization. The component can be a partially or fully qualified assembly plug-in assembly

name, such as , or an assembly DLL name such as that may optionally myplugin,Version=0.0.0.0,Culture=neutral myplugin.dll

include a leading relative or absolute path name.

The locations that are searched for the assembly varies depending on how you define the component:assembly

Value for assembly Example Semantics

Fully-qualified assembly name
(strong-named assembly)

myplugin,Version=...,
Culture=neutral,
publicKeyToken=...

Checks assemblies that have already been loaded
Searches the Global Assembly Cache (GAC)
Searches the directory containing the executableiceboxnet

https://doc.zeroc.com/display/Ice35/Plug-in+API
https://doc.zeroc.com/display/Ice35/Custom+Class+Loaders
https://doc.zeroc.com/display/Ice35/Plug-in+API

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

1.
2.

Partially-qualified assembly
name

myplugin
Checks assemblies that have already been loaded
Searches the directory containing the executableiceboxnet

Relative path name plugins\MyPlugin.dll Path name is relative to the application's current working directory.
Be sure to include the extension in the path name..dll

Absolute path name C:\plugins\MyPlugin.dll Assembly must reside at the specified path name. Be sure to include
the extension in the path name..dll

See MSDN for more information on .how the CLR locates assemblies

The specified must implement the interface. Any arguments that follow the class name are passed to the factory's class Ice.PluginFactory cre

 method. For example:ate

Ice.Plugin.MyPlugin.clr=MyFactory,Version=1.2.3.4,Culture=neutral:MyFactory arg1 arg2

Whitespace separates the arguments, and any arguments that contain whitespace must be enclosed in quotes.

If you specify a relative path name in the entry point, the assembly is located relative to the program's current working directory:

Ice.Plugin.MyPlugin.clr=..\MyFactory.dll:MyFactory arg1 arg2

Enclose the assembly's path name in quotes if it contains spaces:

Ice.Plugin.MyPlugin.clr="C:\Program Files\MyPlugin\MyFactory.dll:MyFactory" arg1 arg2

Ice.Plugin.name

Synopsis

Ice.Plugin. = []name entry_point args

Description

Defines a to be installed during communicator initialization. The format of varies by Ice implementation language, therefore plug-in entry_point
this property cannot be defined in a configuration file that is shared by programs in different languages. Ice provides an alternate syntax that
facilitates such sharing:

Ice.Plugin. .cppname for C++
Ice.Plugin. .javaname for Java
Ice.Plugin. .clrname for the .NET Common Language Runtime

Refer to the relevant property for your language mapping for details on the entry point syntax.

Ice.PluginLoadOrder

Synopsis

Ice.PluginLoadOrder=names

Description

Determines the order in which are loaded. The Ice run time loads the plug-ins in the order they appear in , where each plug-in name is plug-ins names
separated by a comma or white space. Any plug-ins not mentioned in are loaded afterward, in an undefined order.names

http://msdn.microsoft.com/en-us/library/yx7xezcf(v=vs.71).aspx
https://doc.zeroc.com/display/Ice35/Plug-in+Facility
https://doc.zeroc.com/display/Ice35/Plug-in+Facility

	Ice Plug-In Properties

