Ice 3.5.1 Documentation

Ice Plug-In Properties

On this page:

Ice.InitPlugins
Ice.Plugin.name.cpp
Ice.Plugin.name.java
Ice.Plugin.name.clr
Ice.Plugin.name
Ice.PluginLoadOrder

Ice.InitPlugins

Synopsis

Ice.lnitPlugi ns=num

Description

If numis a value greater than zero, the Ice run time automatically initializes the plug-ins it has loaded. The order in which plug-ins are loaded and
initialized is determined by | ce. Pl ugi nLoadCOr der . An application may need to set this property to zero in order to interact directly with a plug-in

after it has been loaded but before it is initialized. In this case, the application must invoke i ni ti al i zePl ugi ns on the plug-in manager to
complete the initialization process. If not defined, the default value is 1.

Ice.Plugin.name.cpp

Synopsis

I ce. Pl ugi n. nane. cpp=pat h[, versi on] : functi on [args]

Description

Defines a C++ plug-in to be installed during communicator initialization. The pat h and optional ver si on components are used to construct the path
name of a DLL or shared library. If no version is supplied, the Ice version is used. The f unct i on component is the name of a function with C linkage.
For example, the entry point MyPl ugi n, 35: cr eat e would imply a shared library name of | i bMyPI ugi n. so. 35 on Unix and MyPl ugi n35. dl |

on Windows. Furthermore, if Ice is built on Windows with debugging, a d is automatically appended to the version (for example, MyPl ugi n35d. dl I).

The function must be declared with external linkage and have the following signature:

C++

<Pl ugi n>* function(const |ce::Communi catorPtr& comruni cator,
const std::string& nang,
const lce::StringSeq& args);

Note that the function must return a pointer and not a smart pointer. The Ice run time deallocates the object when it unloads the library.

Any arguments that follow the entry point are passed to the entry point function. For example:

I ce. Pl ugi n. MyPl ugi n. cpp=MyFactory, 35: create argl arg2

Whitespace separates the arguments, and any arguments that contain whitespace must be enclosed in quotes.

The pat h component may optionally contain a relative or absolute path name, indicated by the presence of a path separator (/ or\). In this case,
the last component of the path is used to construct the version-specific name of the shared library or DLL. Consider this example:

I ce. Pl ugi n. MyPl ugi n. cpp=./ MFactory, 35:create argl arg2

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Advanced+Plug-in+Topics#AdvancedPluginTopics-DelayedPlug-inInitialization
https://doc.zeroc.com/display/Ice35/Plug-in+API

Ice 3.5.1 Documentation

The use of a relative path means the Ice run time will look in the current working directory for I i bMyPl ugi n. so. 35 on Unix or MyPl ugi n35. dl' | on
Windows.

If the pat h component contains spaces, the entire entry point must be enclosed in quotes:

I ce. Pl ugi n. MyPl ugi n. cpp="C: \ Program Fi | es\ MyPl ugi n\ M/Factory, 35: create" argl arg2

If the pat h component does not include a leading path name, Ice delegates to the operating system to locate the shared library or DLL, which
typically means that the plug-in can reside in any of the directories in your shared library or DLL search path.

Ice.Plugin.name.java
Synopsis
I ce. Pl ugi n. nane. j ava=[pat h:] cl ass [args]

Description

Defines a Java plug-in to be installed during communicator initialization. The specified class must implement the | ce. Pl ugi nFact ory interface.
Any arguments that follow the class name are passed to the cr eat e method. For example:

I ce. Plugi n. MyPl ugi n. j ava=MyFactory argl arg2

Whitespace separates the arguments, and any arguments that contain whitespace must be enclosed in quotes.

If pat h is specified, it may be the path name of a JAR file or class directory, as shown below:

I ce. Pl ugi n. MyPl ugi n. j ava=MyFactory. j ar: MyFact ory
I ce. Pl ugi n. MyQ her Pl ugi n. j ava=/ cl asses: MyQt her Fact ory

If pat h contains spaces, it must be enclosed in quotes:

I ce. Pl ugi n. MyPl ugi n. java="factory cl asses.jar": MyFactory

If cl ass is specified without a path, Ice attempts to load the class using class loaders in a well-defined order.

Ice.Plugin.name.clr

Synopsis
I ce. Pl ugi n. nane. cl r=assenbl y: cl ass [args]
Description

Defines a .NET plug-in to be installed during communicator initialization. The assenbl y component can be a partially or fully qualified assembly
name, such as nypl ugi n, Ver si on=0. 0. 0. 0, Cul t ur e=neut r al , or an assembly DLL name such as nypl ugi n. dl | that may optionally
include a leading relative or absolute path name.

The locations that are searched for the assembly varies depending on how you define the assenbl y component:

Value for assenbl y Example Semantics

Fully-qualified assembly name = nypl ugi n, Versi on=. . .,
(strong-named assembly) Cul ture=neutral, 1. Checks assemblies that have already been loaded
publ i ckeyToken=. .. 2. Searches the Global Assembly Cache (GAC)
3. Searches the directory containing the i ceboxnet executable

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Plug-in+API
https://doc.zeroc.com/display/Ice35/Custom+Class+Loaders
https://doc.zeroc.com/display/Ice35/Plug-in+API

Ice 3.5.1 Documentation

Partially-qualified assembly nypl ugi n
name 1. Checks assemblies that have already been loaded
2. Searches the directory containing the i ceboxnet executable
Relative path name pl ugi ns\ MyPl ugi n. dl | Path name is relative to the application's current working directory.
Be sure to include the . dI | extension in the path name.
Absolute path name C:\ pl ugi ns\ MyPl ugi n. dl | Assembly must reside at the specified path name. Be sure to include

the . dI | extension in the path name.

See MSDN for more information on how the CLR locates assemblies.

The specified cl ass must implement the | ce. Pl ugi nFact or y interface. Any arguments that follow the class name are passed to the factory's cr e
at e method. For example:

I ce. Pl ugi n. MyPl ugi n. cl r=MyFact ory, Versi on=1. 2. 3. 4, Cul ture=neutral : \yFactory argl arg2

Whitespace separates the arguments, and any arguments that contain whitespace must be enclosed in quotes.

If you specify a relative path name in the entry point, the assembly is located relative to the program'’s current working directory:

Ice.Plugin. MyPlugin.clr= .\MFactory.dl|: MFactory argl arg2

Enclose the assembly's path name in quotes if it contains spaces:

I ce. Plugi n. MyPl ugi n. cl r="C:\ Program Fi | es\ M\yPl ugi n\ MyFactory.dl|: MFactory" argl arg2

Ice.Plugin.name

Synopsis
I ce. Pl ugi n. nane=entry_poi nt [args]
Description
Defines a plug-in to be installed during communicator initialization. The format of ent ry_poi nt varies by Ice implementation language, therefore
this property cannot be defined in a configuration file that is shared by programs in different languages. Ice provides an alternate syntax that
facilitates such sharing:

® | ce. Pl ugin. nanme. cpp for C++

® | ce. Pl ugin. nane. j ava for Java

® | ce. Plugin. nane. clr forthe .NET Common Language Runtime

Refer to the relevant property for your language mapping for details on the entry point syntax.

Ice.PluginLoadOrder
Synopsis
I ce. Pl ugi nLoadOr der =nanes

Description

Determines the order in which plug-ins are loaded. The Ice run time loads the plug-ins in the order they appear in nanes, where each plug-in name is
separated by a comma or white space. Any plug-ins not mentioned in nanes are loaded afterward, in an undefined order.

Copyright © 2017, ZeroC, Inc.

http://msdn.microsoft.com/en-us/library/yx7xezcf(v=vs.71).aspx
https://doc.zeroc.com/display/Ice35/Plug-in+Facility
https://doc.zeroc.com/display/Ice35/Plug-in+Facility

	Ice Plug-In Properties

