Ice 3.5.1 Documentation

Example of a File System Server in Objective-C

This page presents the source code for a C++ server that implements our file system and communicates with the client we wrote earlier. The code
here is fully functional, apart from the required interlocking for threads.

The server is remarkably free of code that relates to distribution: most of the server code is simply application logic that would be present just the
same for a non-distributed version. Again, this is one of the major advantages of Ice: distribution concerns are kept away from application code so
that you can concentrate on developing application logic instead of networking infrastructure.

@ The server code presented here is not quite correct as it stands: if two clients access the same file in parallel, each via a different thread,
one thread may read the lines instance variable while another thread updates it. Obviously, if that happens, we may write or return
garbage or, worse, crash the server. However, it is trivial to make the read and write operations thread-safe with a few lines of code. We
discuss how to write thread-safe servant implementations in The Ice Threading Model.

On this page:

® Implementing a File System Server in Objective-C
® Server main Program in Objective-C
® Servant Class Definitions in Objective-C
® Servant Implementation in Objective-C
© Implementing Filel in Objective-C
© Implementing Directoryl in Objective-C

Implementing a File System Server in Objective-C

We have now seen enough of the server-side Objective-C mapping to implement a server for our file system. (You may find it useful to review these
Slice definitions before studying the source code.)

Our server is composed of three source files:

® Server. m
This file contains the server main program.

® Filel.m
This file contains the implementation for the Fi | e servants.

® Directoryl.m
This file contains the implementation for the Di r ect or y servants.

Server main Program in Objective-C

Our server main program, in the file Ser ver . m uses the structure we saw in an earlier example:

Objective-C

#i nport <lce/lce.h>
#i nport <Filel.h>
#i nport <Directoryl.h>

#i nport <Foundati on/ NSAut or el easePool . h>

int
mai n(int argc, char* argv[])
{

NSAut or el easePool * pool = [[NSAutorel easePool alloc] init];

int status = 1;
i d<| CECommuni cat or > communi cator = nil;
@ry {
comuni cator = [ICEUti| createConmuni cator: &rgc argv:argv];

i d<I CEQbj ect Adapt er> adapter = [conmuni cator creat eCbj ect Adapt er Wt hEndpoi nts:

@ Si npl eFi | esyst ent
endpoi nts: @default -p 10000"];

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Slice+for+a+Simple+File+System
https://doc.zeroc.com/display/Ice35/Example+of+a+File+System+Client+in+Objective-C
https://doc.zeroc.com/display/Ice35/Slice+for+a+Simple+File+System
https://doc.zeroc.com/display/Ice35/The+Server-Side+main+Function+in+Objective-C
https://doc.zeroc.com/display/Ice35/The+Ice+Threading+Model

Ice 3.5.1 Documentation

/] Create the root directory (with nane "/" and no parent)
/1

Directoryl *root = [Directoryl directoryi:@/" parent:nil];
[root activate: adapter];

/]l Create a file called "README' in the root directory

/1

Filel *file = [Filel filei:@READVE' parent:root];

NSMut abl eArray *text = [NSMutabl eArray arrayWt hObj ect:
@This file systemcontains a collection of poetry."];

[file wite:text current:nil];

[file activate: adapter];

/] Create a directory called "Coleridge" in the root dir

/1

Directoryl *coleridge = [Directoryl directoryi: @Col eridge" parent:root];
[col eridge activate:adapter];

I/l Create a file called "Kubla_Khan"

/1 in the Coleridge directory

/1

file [Filel filei:@Kubla_Khan" parent:col eridge];

text = [NSMut abl eArray arrayWthQoj ects:
@1 n Xanadu di d Kubl a Khan",
@A stately pleasure-done decree:",
@ Where Al ph, the sacred river, ran",
@ Through caverns neasurel ess to man",
@Down to a sunless sea.",
nill;

[file wite:text current:nil];

[file activate: adapter];

/1 All objects are created, allow client requests now
/1
[adapter activate];

/1 Vit until we are done
/1
[commruni cat or wai t For Shut down] ;

status = O;

} @atch (NSException* ex) {
NSLog(@ %@, ex);

}

@ry {
[communi cat or destroy];
} @atch (NSException* ex) {
NSLog(@%@, ex);
}

[pool release];
return status;

There is quite a bit of code here, so let us examine each section in detail:

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

Objective-C

#inmport <lce/lce.h>
#i nport <Filel.h>
#i nport <Directoryl.h>

#i nport <Foundat i on/ NSAut or el easePool . h>

The code includes the header | ce/ | ce. h, which contains the definitions for the Ice run time, and the files Fi | el . h and Di r ect oryl . h, which
contain the definitions of our servant implementations. Because we use an autorelease pool, we need to include Foundat i on
/ NSAut or el easePool . h as well.

The next part of the source code is mostly boiler plate that we saw previously: we create an object adapter, and, towards the end, activate the object
adapter and call wai t For Shut down, which blocks the calling thread until you call shut down or dest r oy on the communicator. (Ice does not make
any demands on the main thread, so wai t For Shut down simply blocks the calling thread; if you want to use the main thread for other purposes, you
are free to do so0.)

Objective-C
int
mai n(int argc, char* argv[])
{
NSAut or el easePool * pool = [[NSAutorel easePool alloc] init];

int status = 1;
i d<I CECommuni cat or > conmuni cator = nil;
@ry {
comuni cator = [ICEUti| createConmuni cator: &urgc argv:argv];

i d<| CEQhj ect Adapt er > adapter = [conmmuni cator createCbject Adapt er Wt hEndpoi nts:
@ Si npl eFi | esyst ent'
endpoi nts: @default -p 10000"];

11

/Il All objects are created, allow client requests now
/1
[adapter activate];

/1 Vait until we are done
/1
[communi cat or wai t For Shut down] ;

status = O;

} @atch (NSException* ex) {
NSLog(@ %@, ex);

}

@ry {
[commmuni cat or destroy];
} @atch (NSException* ex) {
NSLog(@ %@, ex);
}

[pool release];
return status;

The interesting part of the code follows the adapter creation: here, the server instantiates a few nodes for our file system to create the structure
shown below:

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

Yy (’“\1 RootDir

\ = Directo

/ \
. = File _)f \x\.

Coleridge |) .README
o

Kubla-Khan

A small file system.

As we will see shortly, the servants for our directories and files are of type Di rect oryl and Fi | el , respectively. The constructor for either type of
servant accepts two parameters: the name of the directory or file to be created and the servant for the parent directory. (For the root directory, which
has no parent, we pass a ni | parent.) Thus, the statement

Objective-C

Directoryl *root = [Directoryl directoryi:@/" parent:nil];

creates the root directory, with the name "/ " and no parent directory.

Here is the code that establishes the structure in the above illustration shown:

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

Objective-C

/'l Create the root directory (with nane "/" and no parent)
/1

Directoryl *root = [Directoryl directoryi:@/" parent:nil];
[root activate:adapter];

/] Create a file called "README" in the root directory

/1

Filel *file = [Filel filei:@READVE" parent:root];

NSMut abl eArray *text = [NSMutabl eArray arrayWthObj ect:
@This file systemcontains a collection of poetry."];

[file wite:text current:nil];

[file activate: adapter];

/] Create a directory called "Coleridge" in the root dir

/1

Directoryl *coleridge = [Directoryl directoryi: @ Col eri dge" parent:root];
[col eridge activate: adapter];

I/l Create a file called "Kubla_Khan"

/1 in the Coleridge directory

/1

file [Filel filei:@Kubla_Khan" parent:col eridge];

text = [NSMut abl eArray arrayWthObj ects:
@ ! n Xanadu did Kubl a Khan",
@A stately pleasure-done decree:",
@ Where Al ph, the sacred river, ran",
@ Through caverns neasurel ess to man",
@Down to a sunless sea.",
nill;

[file wite:text current:nil];

[file activate: adapter];

We first create the root directory and a file READVE within the root directory. (Note that we pass the servant for the root directory as the parent pointer
when we create the new node of type Fi | el .)

After creating each servant, the code calls act i vat e on the servant. (We will see the definition of this member function shortly.) The act i vat e
member function adds the servant to the ASM.

The next step is to fill the file with text:

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

Objective-C

/'l Create the root directory (with nane "/" and no parent)
/1

Directoryl *root = [Directoryl directoryi:@/" parent:nil];
[root activate:adapter];

/] Create a file called "README" in the root directory

/1

Filel *file = [Filel filei:@READVE" parent:root];

NSMut abl eArray *text = [NSMut abl eArray arrayWthQbj ect:
@This file systemcontains a collection of poetry."];

[file wite:text current:nil];

[file activate: adapter];

/] Create a directory called "Coleridge" in the root dir

/1

Directoryl *coleridge = [Directoryl directoryi: @ Col eri dge" parent:root];
[col eridge activate: adapter];

I/l Create a file called "Kubla_Khan"

/1 in the Coleridge directory

/1

file [Filel filei:@Kubla_Khan" parent:col eridge];

text = [NSMut abl eArray arrayWthObj ects:
@ ! n Xanadu did Kubl a Khan",
@A stately pleasure-done decree:",
@ Where Al ph, the sacred river, ran",
@ Through caverns neasurel ess to man",
@Down to a sunless sea.",
nill;

[file wite:text current:nil];

[file activate: adapter];

Recall that Slice sequences map to NSAr r ay or NSMut abl eAr r ay, depending on the parameter direction. Here, we instantiate that array and add a
line of text to it.

Finally, we call the Slice wr i t e operation on our Fi | el servant by simply writing:

Objective-C

[file wite:text current:nil];

This statement is interesting: the server code invokes an operation on one of its own servants. Because the call happens via the pointer to the
servant (of type Fi | el) and not via a proxy (of type i d<Fi | ePr x>), the Ice run time does not know that this call is even taking place — such a direct
call into a servant is not mediated by the Ice run time in any way and is dispatched as an ordinary Objective-C function call. The operation
implementation in the servant expects a cur r ent object. In this case, we pass nil (which is fine because the operation implementation does not use
it anyway).

In similar fashion, the remainder of the code creates a subdirectory called Col er i dge and, within that directory, a file called Kubl a_Khan to
complete the structure in the above illustration.

Servant Class Definitions in Objective-C

We must provide servants for the concrete interfaces in our Slice specification, that is, we must provide servants for the Fi | e and Di rect ory
interfaces in the Objective-C classes Fi | el and Di r ect or yl . This means that our servant classes look as follows:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Objective-C+Mapping+for+Sequences

Ice 3.5.1 Documentation

Objective-C
#i nport <Fil esystem h>

@nterface Filel : FSFile <FSFile>
...
@nd

@nterface Directoryl : FSDirectory <FSDirectory>
11

@nd

Each servant class derives from its skeleton class and adopts its skeleton protocol.

We now can think about how to implement our servants. One thing that is common to all nodes is that they have a name and a parent directory. As
we saw earlier, we pass these details to a convenience constructor, which also takes care of calling aut or el ease on the new servant.

In addition, we will use UUIDs as the object identities for files and directories. This relieves us of the need to otherwise come up with a unique identity
for each servant (such as path names, which would only complicate our implementation). Because the | i st operation returns proxies to nodes, and
because each proxy carries the identity of the servant it denotes, this means that our servants must store their own identity, so we can create proxies
to them when clients ask for them.

For Fi | e servants, we also need to store the contents of the file, leading to the following definition for the Fi | el class:

Objective-C
#inport <Filesystem h>
@l ass Directoryl;

@nterface Filel : FSFile <FSFile>

{
@rivate
NSStri ng *nyNane;
Directoryl *parent;
| CEldentity *ident;
NSArray *Ilines;
}

@r operty(nonatom c, retain) NSString *nyNang;
@roperty(nonatomc, retain) Directoryl *parent;
@roperty(nonatomc, retain) ICEldentity *ident;
@roperty(nonatomic, retain) NSArray *lines;

+

—~

id) filei:(NSString *)name parent:(Directoryl *)parent;

void) wite: (NSMutabl eArray *)text current: (I CECurrent *)current;
void) activate: (id<l CEOnj ect Adapt er >) a;

nd

—~

® ~

The instance variables store the name, parent node, identity, and the contents of the file. The fi | ei convenience constructor instantiates the
servant, remembers the name and parent directory, assigns a new identity, and calls aut or el ease.

Note that the only Slice operation we have defined here is the wr i t e method. This is necessary because, as we saw previously, the code in Ser ver .
mecalls this method to initialize the files it creates.

For directories, the requirements are similar. They also need to store a name, parent directory, and object identity. Directories are also responsible
for keeping track of the child nodes. We can store these nodes in an array of proxies. This leads to the following definition:

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

Objective-C

#i nport <Fil esystem h>

@nterface Directoryl : FSDirectory <FSDirectory>

{
@rivate
NSStri ng *nyNane;
Directoryl *parent;
| CEl dentity *ident;
NSMut abl eArray *contents;
}

@r operty(nonatom c, retain) NSString *nyNang;
@roperty(nonatomic, retain) Directoryl *parent;
@roperty(nonatomc, retain) ICEldentity *ident;
@roperty(nonatonmic, retain) NSMutabl eArray *contents;

+(id) directoryi:(NSString *)nane parent:(Directoryl *)parent;
-(void) addChil d: (i d<FSNodePrx>)child;
-(void) activate: (id<l CEbj ect Adapt er>)a;
@nd

Because the code in Ser ver . mdoes not call any Slice operations on directory servants, we have not declared any of the corresponding methods.
(We will see the purpose of the addChi | d method shortly.) As for files, the convenience constructor creates the servant, remembers the name and
parent, and assigns an object identity, as well as calling aut or el ease.

Servant Implementation in Objective-C

Let us now turn to how to implement each of the methods for our servants.

Implementing Fi | el in Objective-C
The implementation of the nane, r ead, and wr i t e operations for files is trivial, returning or updating the corresponding instance variable:
Objective-C

-(NSString *) nane: (I CECurrent *)current

{
return nyNane;
}
-(NSArray *) read: (I CECurrent *)current
{
return lines;
}
-(void) wite:(NSMutabl eArray *)text current: (I CECurrent *)current
{
self.lines = text;
}

Note that this constitutes the complete implementation of the Slice operations for files.

Here is the convenience constructor:

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

Objective-C

+(id) filei:(NSString *)nanme parent:(Directoryl *)parent

{
Filel *instance = [[[Filel alloc] init] autorelease];
if(instance == nil)
{
return nil;
}
i nstance. nyNane = nane;
i nstance. parent = parent;
instance.ident = [ICEldentity identity:[ICEUtil generateUU D] category:nil];
return instance;
}

After allocating and autoreleasing the instance, the constructor initializes the instance variables. The only interesting part of this code is how we
create the identity for the servant. gener at eUUl Dis a class method of the | CEUt i | class that returns a UUID. We assign this UUID to the nane
member of the identity.

We saw earlier that the server calls act i vat e after it creates each servant. Here is the implementation of this method:

Objective-C

-(void) activate: (id<l CEQj ect Adapter>)a

{
i d<FSNodePr x> t hi sNode = [FSNodePrx uncheckedCast:[a add:self identity:ident]];
[parent addChi |l d: t hi sNode] ;

This is how our code informs the Ice run time of the existence of a new servant. The call to add on the object adapter adds the servant and object
identity to the adapter's servant map. In other words, this step creates the link between the object identity (which is embedded in proxies), and the
actual Objective-C class instance that provides the behavior for the Slice operations.

add returns a proxy to the servant, of type i d<I CECbj ect Pr x>. Because the cont ent s instance variable of directory servants stores proxies of
type i d<FSNodePr x> (and addChi | d expects a proxy of that type), we down-cast the returned proxy to i d<FSNodePr x>. In this case, because we
know that the servant we just added to the adapter is indeed a servant that implements the operations on the Slice Node interface, we can use an unc
heckedCast .

The call to addChi | d connects the new file to its parent directory.

Finally, we need a deal | oc function so we do not leak the memory for the servant's instance variables:

Objective-C

-(void) dealloc

{
[myNarme rel ease];
[parent rel ease];
[ident rel ease];
[lines rel ease];
[super deal |l oc];
}

Implementing Di r ect or yl in Objective-C

The implementation of the Slice operations for directories is just as simple as for files:

Copyright © 2017, ZeroC, Inc.

10

Ice 3.5.1 Documentation

Objective-C

-(NsSstring *) nane: (I CECurrent *)current

{
return nyNane;
}
-(NSArray *) list:(lICECurrent *)current
{
return contents;
}

Because the cont ent s instance variable stores the proxies for child nodes of the directory, the | i st operation simply returns that variable.

The convenience constructor looks much like the one for file servants:

Objective-C

+(id) directoryi:(NSString *)nane parent:(Directoryl *)parent

{
Directoryl *instance = [[[Directoryl alloc] init] autorel ease];
if(instance == nil)
{
return nil;
}
i nstance. nyNane = nane;
i nstance. parent = parent;
instance.ident = [ICEldentity
identity:(parent ? [ICEUi| generateUU D] : @RootDir")
category:nil];
instance.contents = [[NSMutabl eArray alloc] init];
return instance;
}

The only noteworthy differences are that, for the root directory (which has no parent), the code uses " Root Di r" as the identity. (As we saw earlier,
the client knows that this is the identity of the root directory and uses it to create its proxy.)

The addChi | d method connects our nodes into a hierarchy by updating the cont ent s instance variable. That way, each directory knows which
nodes are contained in it:

Objective-C

-(void) addChild: (i d<FSNodePrx>)child
{

}

[contents addObj ect:child];

Finally, the act i vat e and deal | oc methods are very much like the corresponding methods for files:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Example+of+a+File+System+Client+in+Objective-C

Ice 3.5.1 Documentation

Objective-C

-(void) activate: (id<l| CEQbj ect Adapter>)a

{
i d<FSNodePr x> t hi sNode = [FSNodePrx uncheckedCast:[a add:self identity:ident]];
[parent addChil d:t hi sNode] ;
}
-(void) dealloc
{
[myNarme rel ease];
[parent rel ease];
[ident rel ease];
[contents rel ease];
[super dealloc];
}
See Also

Slice for a Simple File System

Objective-C Mapping for Sequences

Example of a File System Client in Objective-C
The Server-Side main Function in Objective-C
The Ice Threading Model

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Slice+for+a+Simple+File+System
https://doc.zeroc.com/display/Ice35/Objective-C+Mapping+for+Sequences
https://doc.zeroc.com/display/Ice35/Example+of+a+File+System+Client+in+Objective-C
https://doc.zeroc.com/display/Ice35/The+Server-Side+main+Function+in+Objective-C
https://doc.zeroc.com/display/Ice35/The+Ice+Threading+Model

	Example of a File System Server in Objective-C

