
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Asynchronous Method Invocation (AMI) in Objective-C
Asynchronous Method Invocation (AMI) is the term used to describe the client-side support for the asynchronous programming model. AMI supports
both oneway and twoway requests, but unlike their synchronous counterparts, AMI requests never block the calling thread. When a client issues an
AMI request, the Ice run time hands the message off to the local transport buffer or, if the buffer is currently full, queues the request for later delivery.
The application can then continue its activities and poll or wait for completion of the invocation, or receive a callback when the invocation completes.

AMI is transparent to the server: there is no way for the server to tell whether a client sent a request synchronously or asynchronously.

On this page:

Basic Asynchronous API in Objective-C
Proxy Methods for AMI in Objective-C
Exception Handling for AMI in Objective-C

The ICEAsyncResult Protocol in Objective-C
Polling for Completion in Objective-C
Completion Callbacks in Objective-C
Oneway Invocations in Objective-C
Flow Control in Objective-C
Batch Requests in Objective-C
Concurrency in Objective-C

Basic Asynchronous API in Objective-C
Consider the following simple Slice definition:

Slice

module Demo {
 interface Employees {
 string getName(int number);
 };
};

Proxy Methods for AMI in Objective-C

Besides the synchronous proxy methods, the Objective-C mapping generates the following asynchronous proxy methods:

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

Objective-C

-(id<ICEAsyncResult>) begin_getName:(ICEInt)number;

-(id<ICEAsyncResult>) begin_getName:(ICEInt)number
context:(ICEContext *)context;

-(id<ICEAsyncResult>) begin_getName:(ICEInt)number
response:(void(^)(NSMutableString*))response_
exception:(void(^)(ICEException*))exception_;

-(id<ICEAsyncResult>) begin_getName:(ICEInt)number
context:(ICEContext *)context
response:(void(^)(NSMutableString*))response_
exception:(void(^)(ICEException*))exception_;

-(id<ICEAsyncResult>) begin_getName:(ICEInt)number
response:(void(^)(NSMutableString*))response_
exception:(void(^)(ICEException*))exception_
sent:(void(^)(BOOL))sent_;

-(id<ICEAsyncResult>) begin_getName:(ICEInt)number
context:(ICEContext *)context
response:(void(^)(NSMutableString*))response_
exception:(void(^)(ICEException*))exception_
sent:(void(^)(BOOL))sent_;

-(NSMutableString *) end_getName:(id<ICEAsyncResult>)result;

As you can see, the single operation results in several methods as well as an method. The getName begin_getName end_getName begin_
methods optionally accept a and .per-invocation context callbacks

The methods send (or queue) an invocation of . These methods do not block the calling thread.begin_getName getName
The method collects the result of the asynchronous invocation. If, at the time the calling thread calls , the end_getName end_getName
result is not yet available, the calling thread blocks until the invocation completes. Otherwise, if the invocation completed some time before
the call to , the method returns immediately with the result.end_getName

A client could call these methods as follows:

Objective-C

id<EXEmployeesPrx> e = [EXEmployeesPrx checkedCast:...];
id<ICEAsyncResult> r = [e begin_getName:99]

// Continue to do other things here...

NSString* name = [e end_getName:r];

Because does not block, the calling thread can do other things while the operation is in progress.begin_getName

Note that returns a value of type . This value contains the state that the Ice run time requires to keep track begin_getName id<ICEAsyncResult>
of the asynchronous invocation. You must pass the that is returned by the method to the corresponding id<ICEAsyncResult> begin_ end_
method.

The method has one parameter for each in-parameter of the corresponding Slice operation. The method accepts the begin_ end_ id<ICEAsyncRe
 object as its only argument and returns the out-parameters using the as for regular synchronous invocations. For example, sult> same semantics

consider the following operation:

Slice

double op(int inp1, string inp2, out bool outp1, out long outp2);

https://doc.zeroc.com/display/Ice35/Request+Contexts
https://doc.zeroc.com/display/Ice35/Objective-C+Mapping+for+Operations#ObjectiveCMappingforOperations-out

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

The and methods have the following signature:begin_op end_op

Objective-C

-(id<ICEAsyncResult>) begin_op:(ICEInt)inp1 inp2:(NSString *)inp2;
-(ICEDouble) end_op:(BOOL*)outp1 outp2:(ICELong*)outp2
result:(id<ICEAsyncResult>)result;

The call to returns the out-parameters as follows:end_op

Objective-C

BOOL outp1;
ICELong outp2;
ICEDouble doubleValue = [p end_op:&outp1 outp2:&outp2 result:result];

Exception Handling for AMI in Objective-C

If an invocation raises an exception, the exception is thrown by the method, even if the actual error condition for the exception was encountered end_
during the method ("on the way out"). The advantage of this behavior is that all exception handling is located with the code that calls the begin_ end_
method (instead of being present twice, once where the method is called, and again where the method is called).begin_ end_

There is one exception to the above rule: if you destroy the communicator and then make an asynchronous invocation, the method throws begin_ IC
. This is necessary because, once the run time is finalized, it can no longer throw an exception from the ECommunicatorDestroyedException end_

method.

The only other exception that is thrown by the and methods is with the name. This begin_ end_ NSException NSInvalidArgumentException
exception indicates that you have used the API incorrectly. For example, the method throws this exception if you call an operation that has a begin_
return value or out-parameters on a oneway proxy. Similarly, the method throws this exception if you use a different proxy to call the end_ end_
method than the proxy you used to call the , or if the you pass to the method was obtained by calling begin_ method id<ICEAsyncResult> end_
the method for a different operation.begin_

The Protocol in Objective-CICEAsyncResult
The that is returned by the method encapsulates the state of the asynchronous invocation:id<ICEAsyncResult> begin_

Objective-C

@protocol ICEAsyncResult <NSObject>
-(id<ICECommunicator>) getCommunicator;
-(id<ICEConnection>) getConnection;
-(id<ICEObjectPrx>) getProxy;

-(BOOL) isCompleted;
-(void) waitForCompleted;

-(BOOL) isSent;
-(void) waitForSent;

-(BOOL) sentSynchronously;
-(NSString*) getOperation;
@end

The methods have the following semantics:

getCommunicator
This method returns the communicator that sent the invocation.

Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

getConnection
This method returns the connection that was used for the invocation. Note that, for typical asynchronous proxy invocations, this method
returns a nil value because the possibility of automatic retries means the connection that is currently in use could change unexpectedly. The

 method only returns a non-nil value when the is obtained by calling ongetConnection ICEAsyncResult begin_flushBatchRequests
a object.Connection

getProxy
This method returns the proxy that was used to call the method, or nil if the was not obtained via an begin_ ICEAsyncResult
asynchronous proxy invocation.

getOperation
This method returns the name of the operation.

isCompleted
This method returns true if, at the time it is called, the result of an invocation is available, indicating that a call to the method will not end_
block the caller. Otherwise, if the result is not yet available, the method returns false.

waitForCompleted
This method blocks the caller until the result of an invocation becomes available.

isSent
When you call the method, the Ice run time attempts to write the corresponding request to the client-side transport. If the transport begin_
cannot accept the request, the Ice run time queues the request for later transmission. returns true if, at the time it is called, the isSent
request has been written to the local transport (whether it was initially queued or not). Otherwise, if the request is still queued, isSent
returns false.

waitForSent
This method blocks the calling thread until a request has been written to the client-side transport.

sentSynchronously
This method returns true if a request was written to the client-side transport without first being queued. If the request was initially queued, se

 returns false (independent of whether the request is still in the queue or has since been written to the client-side ntSynchronously
transport).

Polling for Completion in Objective-C
The methods allow you to poll for call completion. Polling is useful in a variety of cases. As an example, consider the following ICEAsyncResult
simple interface to transfer files from client to server:

Slice

interface FileTransfer
{
 void send(int offset, ByteSeq bytes);
};

The client repeatedly calls to send a chunk of the file, indicating at which offset in the file the chunk belongs. A naïve way to transmit a file send
would be along the following lines:

Objective-C

NSInputStream* stream = ...
id<EXFileTransferPrx> ft = [EXFileTransferPrx checkedCast:...];
int chunkSize = ...;
int offset = 0;
while([stream hasBytesAvailable])
{
 char bytes[chunkSize];
 int l = [stream read:bytes maxLength:sizeof(bytes)];
 if(l > 0)
 {
 [ft send:offset bytes:[ByteSeq dataWithBytes:bytes length:l]];
 offset += l;
 }
}

Ice 3.5.1 Documentation

5 Copyright © 2017, ZeroC, Inc.

This works, but not very well: because the client makes synchronous calls, it writes each chunk on the wire and then waits for the server to receive
the data, process it, and return a reply before writing the next chunk. This means that both client and server spend much of their time doing nothing
— the client does nothing while the server processes the data, and the server does nothing while it waits for the client to send the next chunk.

Using asynchronous calls, we can improve on this considerably:

Objective-C

NSInputStream* stream = ...
id<EXFileTransferPrx> ft = [EXFileTransferPrx checkedCast:...];
int chunkSize = ...;
int offset = 0;
NSMutableArray* results = [NSMutableArray arrayWithCapacity:5];
int numRequests = 5;
while([stream hasBytesAvailable])
{
 char bytes[chunkSize];
 int l = [stream read:bytes maxLength:sizeof(bytes)];
 if(l > 0)
 {
 // Send up to numRequests + 1 chunks asynchronously.
 id<ICEAsyncResult> r =
 [ft begin_send:offset bytes:[ByteSeq dataWithBytes:bytes length:l]];
 offset += l;

 // Wait until this request has been passed to the
 // transport.
 [r waitForSent];
 [results addObject:r];

 // Once there are more than numRequests, wait for the
 // least recent one to complete.
 while([results count] > numRequests)
 {
 r = [results objectAtIndex:0];
 [results removeObjectAtIndex:0];
 [r waitForCompleted];
 }
 }
}

// Wait for any remaining requests to complete.
for(id<ICEAsyncResult> r in results)
{
 [r waitForCompleted];
}

With this code, the client sends up to chunks before it waits for the least recent one of these requests to complete. In other numRequests + 1
words, the client sends the next request without waiting for the preceding request to complete, up to the limit set by . In effect, this numRequests
allows the client to "keep the pipe to the server full of data": the client keeps sending data, so both client and server continuously do work.

Obviously, the correct chunk size and value of depend on the bandwidth of the network as well as the amount of time taken by the numRequests
server to process each request. However, with a little testing, you can quickly zoom in on the point where making the requests larger or queuing more
requests no longer improves performance. With this technique, you can realize the full bandwidth of the link to within a percent or two of the
theoretical bandwidth limit of a native socket connection.

Completion Callbacks in Objective-C
The method accepts three optional callback arguments that allow you to be notified asynchronously when a request completes. Here is the begin_
signature of the method that we saw :begin_getName earlier

Objective-C

Ice 3.5.1 Documentation

6 Copyright © 2017, ZeroC, Inc.

-(id<ICEAsyncResult>) begin_getName:(ICEInt)number
 response:(void(^)(NSMutableString*))response_
 exception:(void(^)(ICEException*))exception_;

-(id<ICEAsyncResult>) begin_getName:(ICEInt)number
 context:(ICEContext *)context
 response:(void(^)(NSMutableString*))response_
 exception:(void(^)(ICEException*))exception_;

-(id<ICEAsyncResult>) begin_getName:(ICEInt)number
 response:(void(^)(NSMutableString*))response_
 exception:(void(^)(ICEException*))exception_
 sent:(void(^)(BOOL))sent_;

-(id<ICEAsyncResult>) begin_getName:(ICEInt)number
 context:(ICEContext *)context
 response:(void(^)(NSMutableString*))response_
 exception:(void(^)(ICEException*))exception_
 sent:(void(^)(BOOL))sent_;

The value you pass for the response callback (), the exception callback (), or the sent callback () argument must be an response exception sent
Objective-C block. The response callback is invoked when the request completes successfully, and the exception callback is invoked when the
operation raises an exception. (The sent callback is primarily used for .)flow control

For example, consider the following callbacks for an invocation of the operation:getName

Objective-C

void(^getNameCB)(NSMutableString*) = ^(NSMutableString* name)
{
 NSLog(@"Name is: %@", name);
};

void(^failureCB)(ICEException*) = ^(ICEException* ex)
{
 NSLog(@"Exception is: %@", [ex description]);
};

The response callback parameters depend on the operation signature. If the operation has a non- return type, the first parameter of the void
response callback is the return value. The return value (if any) is followed by a parameter for each out-parameter of the corresponding Slice
operation, in the order of declaration.

The exception callback is called if the invocation fails because of an Ice run time exception, or if the operation raises a user exception.

To inform the Ice run time that you want to receive callbacks for the completion of the asynchronous call, you pass the callbacks to the begin_
method:

Objective-C

e = [EmployeesPrx checkedCast:...]

[e begin_getName:99 response:getNameCB exception:failureCB];

You can also pass the Objective-C blocks directly to the call:

Objective-C

[e begin_getName:99
 response: ^(NSMutableString* name)
 {
 NSLog(@"Name is: %@", name);
 }
 exception: ^(ICEException* ex)

Ice 3.5.1 Documentation

7 Copyright © 2017, ZeroC, Inc.

 {
 NSLog(@"Exception is: %@", [ex description]);
 }];

Ice enforces the following semantics at run time regarding which callbacks can be optionally specified with a value:nil

You must supply an exception callback.
You may omit the response callback for an operation that returns no data (that is, an operation with a void return type and no out-
parameters).

Oneway Invocations in Objective-C
You can invoke operations via oneway proxies asynchronously, provided the operation has return type, does not have any out-parameters, and void
does not raise user exceptions. If you call the method on a oneway proxy for an operation that returns values or raises a user exception, the begin_

 method throws with the name.begin_ NSException NSInvalidArgumentException

The callback signatures look exactly as for a twoway invocation, but the response block is never called and may be .nil

Flow Control in Objective-C
Asynchronous method invocations never block the thread that calls the method: the Ice run time checks to see whether it can write the begin_
request to the local transport. If it can, it does so immediately in the caller's thread. (In that case, [ICEAsyncResult sentSynchronously]
returns true.) Alternatively, if the local transport does not have sufficient buffer space to accept the request, the Ice run time queues the request
internally for later transmission in the background. (In that case, returns false.)[ICEAsyncResult sentSynchronously]

This creates a potential problem: if a client sends many asynchronous requests at the time the server is too busy to keep up with them, the requests
pile up in the client-side run time until, eventually, the client runs out of memory.

The API provides a way for you to implement flow control by counting the number of requests that are queued so, if that number exceeds some
threshold, the client stops invoking more operations until some of the queued operations have drained out of the local transport.

You can supply a sent callback to be notified when the request was successfully sent:

Objective-C

void(^sentCB)(BOOL) = ^(BOOL sentSynchronously)
{
 ...
}

You inform the Ice run time that you want to be notified when a request has been passed to the local transport as usual:

Objective-C

[e begin_getName:99 response:getNameCB exception:failureCB sent:sentCB];

If the Ice run time can immediately pass the request to the local transport, it does so and invokes the sent callback from the thread that calls the begi
 method. On the other hand, if the run time has to queue the request, it calls the sent callback from a different thread once it has written the n_

request to the local transport. The boolean parameter indicates whether the request was sent synchronously or was queued.sentSynchronously

The sent callback allows you to limit the number of queued requests by counting the number of requests that are queued and decrementing the count
when the Ice run time passes a request to the local transport.

Batch Requests in Objective-C
Applications that send can either flush a batch explicitly or allow the Ice run time to flush automatically. The proxy method batched requests ice_flu

 performs an immediate flush using the synchronous invocation model and may block the calling thread until the entire message shBatchRequests
can be sent. Ice also provides asynchronous versions of this method so you can flush batch requests asynchronously.

https://doc.zeroc.com/display/Ice35/Batched+Invocations

Ice 3.5.1 Documentation

8 Copyright © 2017, ZeroC, Inc.

begin_ice_flushBatchRequests and are proxy methods that flush any batch requests queued by that proxy.end_ice_flushBatchRequests

In addition, similar methods are available on the communicator and the object that is returned by Connection [ICEAsyncResult
. These methods flush batch requests sent via the same communicator and via the same connection, respectively.getConnection]

Concurrency in Objective-C
The Ice run time always invokes your callback methods from a separate thread, with one exception: it calls the sent callback from the thread calling
the method if the request could be sent synchronously. In the sent callback, you know which thread is calling the callback by looking at the begin_ se

 parameter.ntSynchronously

See Also

Request Contexts
Batched Invocations

https://doc.zeroc.com/display/Ice35/Request+Contexts
https://doc.zeroc.com/display/Ice35/Batched+Invocations

	Asynchronous Method Invocation (AMI) in Objective-C

