Ice 3.5.1 Documentation

Example of a File System Client in Objective-C

This page presents a very simple client to access a server that implements the file system we developed in Slice for a Simple File System. The
Objective-C code shown here hardly differs from the code you would write for an ordinary Objective-C program. This is one of the biggest advantages
of using Ice: accessing a remote object is as easy as accessing an ordinary, local Objective-C object. This allows you to put your effort where you
should, namely, into developing your application logic instead of having to struggle with arcane networking APIs. This is true for the server side as
well, meaning that you can develop distributed applications easily and efficiently.

We now have seen enough of the client-side Objective-C mapping to develop a complete client to access our remote file system. For reference, here
is the Slice definition once more:

Slice

["objc:prefix:FS"]
nodul e Fil esystem {
exception GenericError {
string reason;

1

interface Node {
i denpotent string nane();

b
sequence<string> Lines;

interface File extends Node {
i denpotent Lines read();
i denpotent void wite(Lines text) throws GenericError;

b
sequence<Node*> NodeSeq;

interface Directory extends Node {
i denpot ent NodeSeq list();

}
}s

To exercise the file system, the client does a recursive listing of the file system, starting at the root directory. For each node in the file system, the
client shows the name of the node and whether that node is a file or directory. If the node is a file, the client retrieves the contents of the file and

prints them.

The body of the client code looks as follows:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Slice+for+a+Simple+File+System
https://doc.zeroc.com/display/Ice35/Example+of+a+File+System+Server+in+Objective-C

Ice 3.5.1 Documentation

Objective-C

#inmport <lce/lce.h>
#i nport <Fil esystem h>

#i nport <Foundat i on/ NSAut or el easePool . h>
#i nport <stdio. h>

static void
i st Recursive(id<FSDirectoryPrx> dir, int depth)
{

/1

}

int
mai n(int argc, char* argv[])
{
NSAut or el easePool * pool = [[NSAutorel easePool alloc] init];
int status = 1;
i d<I CECommuni cat or > conmuni cat or ;
@ry
{

comuni cator = [ICEUti| createConmuni cator: &urgc argv:argv];

I/l Create a proxy for the root directory
11
i d<FSDirectoryPrx> rootDir = [FSDirectoryPrx checkedCast:
[comuni cator stringToProxy: @RootDir:default -p 10000"]];
if (!rootDir)
[NSException raise: @invalid proxy" format: @nil"];

/1 Recursively list the contents of the root directory
/1

printf("Contents of root directory:\n");

Ii stRecursive(rootDir, 0);

status = O;
} @atch (NSException *ex) {
NSLog(@%@ n", [ex nane]);
}

@ry {
[communi cat or destroy];
} @atch (NSException* ex) {
NSLog(@%@ n", [ex nane]);
}

[pool release];
return status;

1. The code imports a few header files:
® | cel/lce. h: Always included in both client and server source files, provides definitions that are necessary for accessing the Ice
run time.
® Fil esystem h The header that is generated by the Slice compiler from the Slice definitions in Fi | esystem i ce.
® NSAut or el easePool . h: The client uses an autorelease pool to reclaim memory before it exits.
® stdio. h: The implementation of | i st Recur si ve prints to st dout .

2. The structure of the code in nai n follows what we saw in Hello World Application. After initializing the run time, the client creates a proxy to
the root directory of the file system. For this example, we assume that the server runs on the local host and listens using the default protocol
(TCP/IP) at port 10000. The object identity of the root directory is known to be Root Di r .

3. The client down-casts the proxy to Di r ect or yPr x and passes that proxy to | i st Recur si ve, which prints the contents of the file system.

Most of the work happens in | i st Recur si ve:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Hello+World+Application

Ice 3.5.1 Documentation

Objective-C
/1 Print the specified nunber of tabs.

static void
printlndent(int depth)
{
while (depth-- > 0)
putchar('\t');
}

/'l Recursively print the contents of directory "dir" in tree
// fashion. For files, show the contents of each file.

/1 The "depth" paraneter is the current nesting |evel

/1 (for indentation).

static void
i st Recursive(id<FSDirectoryPrx> dir, int depth)

{
++dept h;
FSNodeSeq *contents = [dir list];
for (i d<FSNodePrx> node in contents) {
i d<FSDirectoryPrx> dir = [FSDirectoryPrx checkedCast: node];
i d<FSFil ePrx> file = [FSFi | ePrx uncheckedCast: node];
printlndent (depth);
printf("%%\n", [[node name] UTF8String], (dir ? " (directory):"
if (dir) {
i st Recursive(dir, depth);
} else {
FSLines *text = [file read];
for (NSString *line in text) {
printlndent (depth);
printf("\t%\n", [line UTF8String]);
}
}
}
}

"(file):"));

The function is passed a proxy to a directory to list, and an indent level. (The indent level increments with each recursive call and allows the code to
print the name of each node at an indent level that corresponds to the depth of the tree at that node.) | i st Recur si ve calls the | i st operation on

the directory and iterates over the returned sequence of nodes:

1. The code does a checkedCast to narrow the Node proxy to a Di r ect or y proxy, as well as an uncheckedCast to narrow the Node
proxy to a Fi | e proxy. Exactly one of those casts will succeed, so there is no need to call checkedCast twice: if the Node is-a Di rect ory,
the code uses the i d<FSDi r ect or yPr x> returned by the checkedCast ; if the checkedCast fails, we know that the Node is-a Fi | e and,

therefore, an uncheckedCast is sufficient to get an i d<FSFi | ePr x>.

In general, if you know that a down-cast to a specific type will succeed, it is preferable to use an uncheckedCast instead of a checkedCast

because an uncheckedCast does not incur any network traffic.

2. The code prints the name of the file or directory and then, depending on which cast succeeded, prints " (di rectory)" or"(file)"

following the name.
3. The code checks the type of the node:
® [fitis a directory, the code recurses, incrementing the indent level.

® [fitis afile, the code calls the r ead operation on the file to retrieve the file contents and then iterates over the returned sequence

of lines, printing each line.

Assume that we have a small file system consisting of two files and a directory as follows:

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

f_) = Directory L{ﬁ) RootDir
/SN

/N
')X 1
Coleridge | . README

Kubla-Khan

A small file system.

The output produced by the client for this file system is:

Contents of root directory:
README (file):
This file systemcontains a collection of poetry.
Col eridge (directory):
Kubl a_Khan (file):
I'n Xanadu did Kubla Khan
A stately pl easure-donme decree:
Were Al ph, the sacred river, ran
Through caverns neasurel ess to man
Down to a sunl ess sea.

Note that, so far, our client (and server) are not very sophisticated:

® The protocol and address information are hard-wired into the code.
® The client makes more remote procedure calls than strictly necessary; with minor redesign of the Slice definitions, many of these calls can
be avoided.

We will see how to address these shortcomings in our discussions of IceGrid and object life cycle.

See Also

Hello World Application

Slice for a Simple File System

Example of a File System Server in Objective-C
Object Life Cycle

IceGrid

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/IceGrid
https://doc.zeroc.com/display/Ice35/Object+Life+Cycle
https://doc.zeroc.com/display/Ice35/Hello+World+Application
https://doc.zeroc.com/display/Ice35/Slice+for+a+Simple+File+System
https://doc.zeroc.com/display/Ice35/Example+of+a+File+System+Server+in+Objective-C
https://doc.zeroc.com/display/Ice35/Object+Life+Cycle
https://doc.zeroc.com/display/Ice35/IceGrid

	Example of a File System Client in Objective-C

