
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

1.
2.
3.
4.

Object Incarnation in Python
Having created a servant class such as the rudimentary , you can instantiate the class to create a concrete servant that can receive classNodeI
invocations from a client. However, merely instantiating a servant class is insufficient to incarnate an object. Specifically, to provide an
implementation of an Ice object, you must take the following steps:

Instantiate a servant class.
Create an identity for the Ice object incarnated by the servant.
Inform the Ice run time of the existence of the servant.
Pass a proxy for the object to a client so the client can reach it.

On this page:

Instantiating a Python Servant
Creating an Identity in Python
Activating a Python Servant
UUIDs as Identities in Python
Creating Proxies in Python

Proxies and Servant Activation in Python
Direct Proxy Creation in Python

Instantiating a Python Servant
Instantiating a servant means to allocate an instance:

Python

servant = NodeI("Fred")

This statement creates a new instance and assigns its reference to the variable .NodeI servant

Creating an Identity in Python
Each Ice object requires an identity. That identity must be unique for all servants using the same object adapter.

An Ice object identity is a structure with the following Slice definition:

Slice

module Ice {
 struct Identity {
 string name;
 string category;
 };
 // ...
};

The full identity of an object is the combination of both the and fields of the structure. For now, we will leave the name category Identity category
field as the empty string and simply use the field. (The field is most often used in conjunction with .)name category servant locators

To create an identity, we simply assign a key that identifies the servant to the field of the structure:name Identity

The Ice object model assumes that all objects (regardless of their adapter) have a .globally unique identity

https://doc.zeroc.com/display/Ice35/Server-Side+Python+Mapping+for+Interfaces#ServerSidePythonMappingforInterfaces-ServantClassesinPython
https://doc.zeroc.com/display/Ice35/Servant+Locators
https://doc.zeroc.com/display/Ice35/Object+Life+Cycle

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

1.

2.
3.

Python

id = Ice.Identity()
id.name = "Fred" # Not unique, but good enough for now

Note that the allows us to write the following equivalent code:mapping for structures

Python

id = Ice.Identity("Fred") # Not unique, but good enough for now

Activating a Python Servant
Merely creating a servant instance does nothing: the Ice run time becomes aware of the existence of a servant only once you explicitly tell the object
adapter about the servant. To activate a servant, you invoke the operation on the object adapter. Assuming that we have access to the object add
adapter in the variable, we can write:adapter

Python

adapter.add(servant, id)

Note the two arguments to : the servant and the object identity. Calling on the object adapter adds the servant and the servant's identity to add add
the adapter's servant map and links the proxy for an Ice object to the correct servant instance in the server's memory as follows:

The proxy for an Ice object, apart from addressing information, contains the identity of the Ice object. When a client invokes an operation,
the object identity is sent with the request to the server.
The object adapter receives the request, retrieves the identity, and uses the identity as an index into the servant map.
If a servant with that identity is active, the object adapter retrieves the servant from the servant map and dispatches the incoming request
into the correct member function on the servant.

Assuming that the object adapter is in the , client requests are dispatched to the servant as soon as you call .active state add

UUIDs as Identities in Python
The Ice object model assumes that object identities are globally unique. One way of ensuring that uniqueness is to use UUIDs (Universally Unique
Identifiers) as identities. The function creates such identities:Ice.generateUUID

Python

import Ice
print Ice.generateUUID()

When executed, this program prints a unique string such as . Each call to creates a 5029a22c-e333-4f87-86b1-cd5e0fcce509 generateUUID
string that differs from all previous ones.

You can use a UUID such as this to create object identities. For convenience, the object adapter has an operation that generates a addWithUUID
UUID and adds a servant to the servant map in a single step. Using this operation, we can create an identity and register a servant with that identity
in a single step as follows:

Python

adapter.addWithUUID(NodeI("Fred"))

https://doc.zeroc.com/display/Ice35/Python+Mapping+for+Structures
https://doc.zeroc.com/display/Ice35/Object+Adapter+States

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

Creating Proxies in Python
Once we have activated a servant for an Ice object, the server can process incoming client requests for that object. However, clients can only access
the object once they hold a proxy for the object. If a client knows the server's address details and the object identity, it can create a proxy from a
string, as we saw in our first example in . However, creation of proxies by the client in this manner is usually only done to Hello World Application
allow the client access to initial objects for bootstrapping. Once the client has an initial proxy, it typically obtains further proxies by invoking operations.

The object adapter contains all the details that make up the information in a proxy: the addressing and protocol information, and the object identity.
The Ice run time offers a number of ways to create proxies. Once created, you can pass a proxy to the client as the return value or as an out-
parameter of an operation invocation.

Proxies and Servant Activation in Python

The and servant activation operations on the object adapter return a proxy for the corresponding Ice object. This means we can add addWithUUID
write:

Python

proxy = adapter.addWithUUID(NodeI("Fred"))
nodeProxy = Filesystem.NodePrx.uncheckedCast(proxy)

Pass nodeProxy to client...

Here, both activates the servant and returns a proxy for the Ice object incarnated by that servant in a single step.addWithUUID

Note that we need to use an here because returns a proxy of type .uncheckedCast addWithUUID Ice.ObjectPrx

Direct Proxy Creation in Python

The object adapter offers an operation to create a proxy for a given identity:

Slice

module Ice {
 local interface ObjectAdapter {
 Object* createProxy(Identity id);
 // ...
 };
};

Note that creates a proxy for a given identity whether a servant is activated with that identity or not. In other words, proxies have a life createProxy
cycle that is quite independent from the life cycle of servants:

Python

id = Ice.Identity()
id.name = Ice.generateUUID()
proxy = adapter.createProxy(id)

This creates a proxy for an Ice object with the identity returned by . Obviously, no servant yet exists for that object so, if we return the generateUUID
proxy to a client and the client invokes an operation on the proxy, the client will receive an . (We examine these life ObjectNotExistException
cycle issues in more detail in .)Object Life Cycle

See Also

Hello World Application
Python Mapping for Structures
Server-Side Python Mapping for Interfaces
Object Adapter States
Servant Locators
Object Life Cycle

https://doc.zeroc.com/display/Ice35/Hello+World+Application
https://doc.zeroc.com/display/Ice35/Object+Life+Cycle
https://doc.zeroc.com/display/Ice35/Hello+World+Application
https://doc.zeroc.com/display/Ice35/Python+Mapping+for+Structures
https://doc.zeroc.com/display/Ice35/Server-Side+Python+Mapping+for+Interfaces
https://doc.zeroc.com/display/Ice35/Object+Adapter+States
https://doc.zeroc.com/display/Ice35/Servant+Locators
https://doc.zeroc.com/display/Ice35/Object+Life+Cycle

Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

	Object Incarnation in Python

