Ice 3.5.1 Documentation

Parameter Passing in Python

For each i n parameter of a Slice operation, the Python mapping generates a corresponding parameter for the method in the skeleton. In addition,
every operation has a trailing parameter of type | ce. Cur r ent . For example, the nanme operation of the Node interface has no parameters, but the na
me method in a Python servant has a cur r ent parameter. We will ignore this parameter for now.

Parameter passing on the server side follows the rules for the client side. An operation returning multiple values returns them in a tuple consisting of
a non-voi d return value, if any, followed by the out parameters in the order of declaration. An operation returning only one value simply returns the
value itself.

@ An operation returns multiple values when it declares multiple out parameters, or when it declares a non-voi d return type and at least one
out parameter.

To illustrate these rules, consider the following interface that passes string parameters in all possible directions:

Slice

interface Exanple {
string opl(string sin);
void op2(string sin, out string sout);
string op3(string sin, out string sout);

}s

The generated skeleton class for this interface looks as follows:

Python

cl ass Exanpl e(lce. Cbject):
def __init__ (self):
#o...

Operation signatures.
def opl(self, sin, current=None):

def op2(self, sin, current=None):
def op3(self, sin, current=None):

HOHOH R R

The signatures of the Python methods are identical because they all accept a single i n parameter, but their implementations differ in the way they
return values. For example, we could implement the operations as follows:

Python

cl ass Exanpl el (Exanpl e):
def opl(self, sin, current=None):
print sin # In parans are initialized
return "Done" # Return val ue

def op2(self, sin, current=None):
print sin # In parans are initialized
return "Hello World!" # Qut paraneter

def op3(self, sin, current=None):
print sin # In parans are initialized
return ("Done", "Hello World!")

Notice that op1 and op2 return their string values directly, whereas op3 returns a tuple consisting of the return value followed by the out parameter.
This code is in no way different from what you would normally write if you were to pass strings to and from a function; the fact that remote procedure

calls are involved does not impact your code in any way. The same is true for parameters of other types, such as proxies, classes, or dictionaries: the
parameter passing conventions follow normal Python rules and do not require special-purpose API calls.

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice35/The+Current+Object
https://doc.zeroc.com/display/Ice35/Python+Mapping+for+Operations

Ice 3.5.1 Documentation

See Also

® Server-Side Python Mapping for Interfaces
® Python Mapping for Operations

® Raising Exceptions in Python

® The Current Object

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice35/Server-Side+Python+Mapping+for+Interfaces
https://doc.zeroc.com/display/Ice35/Python+Mapping+for+Operations
https://doc.zeroc.com/display/Ice35/Raising+Exceptions+in+Python
https://doc.zeroc.com/display/Ice35/The+Current+Object

	Parameter Passing in Python

