Ice 3.5.1 Documentation

Intercepting Object Insertion and Extraction in C-Sharp

In some situations it may be necessary for an application to intercept the insertion and extraction of Ice objects. For example, the Ice extension for
PHP is implemented using Ice for C++ but represents Ice objects as native PHP objects. The PHP extension accomplishes this by manually encoding
and decoding Ice objects as directed by the data encoding rules. However, the extension obviously cannot pass a native PHP object to the C++
stream function wr i t eObj ect . To bridge this gap between object systems, Ice supplies the helper classes described below.

On this page:

® |nserting Objects in C#
® Extracting Objects in C#

Inserting Objects in C#

The Obj ect Wi t er base class facilitates the insertion of objects to a stream:

C#

nanespace |ce

{
public abstract class ObjectWiter : Objectlnpl
{
public abstract void wite(QutputStream outStrean;
11
}
}

A foreign Ice object is inserted into a stream using the following technique:
1. A C# "wrapper" class is derived from Cbj ect Wi t er . This class wraps the foreign object and implements the wr i t e member function.
2. An instance of the wrapper class is passed to wr i t eObj ect . (This is possible because Obj ect Wi t er derives from | ce. Qbj ect .)
Eventually, the wr i t e member function is invoked on the wrapper instance.
3. The implementation of wr i t e encodes the object's state as directed by the data encoding rules for classes.

It is the application's responsibility to ensure that there is a one-to-one mapping between foreign Ice objects and wrapper objects. This is necessary
in order to ensure the proper encoding of object graphs.

Extracting Objects in C#

The Obj ect Reader class facilitates the extraction of objects from a stream:

C#

namespace |ce

{ public abstract class ObjectReader : Objectlnpl
{ public abstract void read(lnputStreaminStrean);
11
}
public del egate string Conpactl|dResol ver(int id);
}

Extracting the state of a foreign Ice object is more complicated than insertion:

1. A C# "wrapper" class is derived from Obj ect Reader . An instance of this class represents a foreign Ice object.

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice35/Client-Side+Slice-to-PHP+Mapping
https://doc.zeroc.com/display/Ice35/Client-Side+Slice-to-PHP+Mapping
https://doc.zeroc.com/display/Ice35/Data+Encoding
https://doc.zeroc.com/display/Ice35/Data+Encoding+for+Classes

Ice 3.5.1 Documentation

. An object factory is installed that returns instances of the wrapper class. Note that a single object factory can be used for all Slice types if it

is registered with an empty Slice type ID.

. A C# callback class implements the ReadObj ect Cal | back interface. The implementation of i nvoke expects its argument to be either null

or an instance of the wrapper class as returned by the object factory.

. An instance of the callback class is passed to r eadObj ect .
. When the stream is ready to extract the state of an object, it invokes r ead on the wrapper class. The implementation of r ead decodes the

object's state as directed by the data encoding rules for classes.

. The callback object passed to r eadObj ect is invoked, passing the instance of the wrapper object. All other callback objects representing

the same instance in the stream (in case of object graphs) are invoked with the same wrapper object.

If your class definitions use compact type IDs, you must also supply an implementation of Conpact | dResol ver when initializing the communicator.
This object is responsible for translating numeric type IDs into their string equivalents.

See Also

Client-Side Slice-to-PHP Mapping
Data Encoding

Data Encoding for Classes

Class Factories in C#
Communicator Initialization

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice35/C-Sharp+Mapping+for+Classes#CSharpMappingforClasses-ClassFactoriesinC#
https://doc.zeroc.com/display/Ice35/Data+Encoding+for+Classes
https://doc.zeroc.com/display/Ice35/Classes+with+Compact+Type+IDs
https://doc.zeroc.com/display/Ice35/Communicator+Initialization
https://doc.zeroc.com/display/Ice35/Client-Side+Slice-to-PHP+Mapping
https://doc.zeroc.com/display/Ice35/Data+Encoding
https://doc.zeroc.com/display/Ice35/Data+Encoding+for+Classes
https://doc.zeroc.com/display/Ice35/C-Sharp+Mapping+for+Classes#CSharpMappingforClasses-ClassFactoriesinC#
https://doc.zeroc.com/display/Ice35/Communicator+Initialization

	Intercepting Object Insertion and Extraction in C-Sharp

