
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

1.
2.

3.

Intercepting Object Insertion and Extraction in C++
In some situations it may be necessary for an application to intercept the insertion and extraction of Ice objects. For example, the Ice extension for

 is implemented using Ice for C++ but represents Ice objects as native PHP objects. The PHP extension accomplishes this by manually encoding PHP
and decoding Ice objects as directed by the rules. However, the extension obviously cannot pass a native PHP object to the C++ data encoding
stream function for writing objects. To bridge this gap between object systems, Ice supplies the helper classes described below.

On this page:

Inserting Objects in C++
Extracting Objects in C++

Inserting Objects in C++
The base class facilitates the insertion of objects to a stream:ObjectWriter

C++

namespace Ice {
 class ObjectWriter : public Ice::Object {
 public:
 virtual void write(const OutputStreamPtr&) const = 0;
 // ...
 };
 typedef ... ObjectWriterPtr;
}

A foreign Ice object is inserted into a stream using the following technique:

A C++ "wrapper" class is derived from . This class wraps the foreign object and implements the member function.ObjectWriter write
An instance of the wrapper class is passed to . (This is possible because derives from .) writeObject ObjectWriter Ice::Object
Eventually, the member function is invoked on the wrapper instance.write
The implementation of encodes the object's state as directed by the .write data encoding rules for classes

It is the application's responsibility to ensure that there is a one-to-one mapping between foreign Ice objects and wrapper objects. This is necessary
in order to ensure the proper encoding of object graphs.

Extracting Objects in C++
The class facilitates the extraction of objects from a stream:ObjectReader

C++

namespace Ice {
 class ObjectReader : public Ice::Object {
 public:
 virtual void read(const InputStreamPtr&) = 0;
 // ...
 };
 typedef ... ObjectReaderPtr;

 class CompactIdResolver : public IceUtil::Shared {
 public:
 virtual std::string resolve(Ice::Int) const = 0;
 };
 typedef ... CompactIdResolverPtr;
}

https://doc.zeroc.com/display/Ice35/Client-Side+Slice-to-PHP+Mapping
https://doc.zeroc.com/display/Ice35/Client-Side+Slice-to-PHP+Mapping
https://doc.zeroc.com/display/Ice35/Data+Encoding
https://doc.zeroc.com/display/Ice35/Data+Encoding+for+Classes

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

1.
2.

3.

4.
5.

6.

Extracting the state of a foreign Ice object is more complicated than insertion:

A C++ "wrapper" class is derived from . An instance of this class represents a foreign Ice object.ObjectReader
An is installed that returns instances of the wrapper class. Note that a single object factory can be used for all Slice types if it object factory
is registered with an empty Slice type ID.
A C++ callback class is derived from . The implementation of expects its argument to be either nil or an ReadObjectCallback invoke
instance of the wrapper class as returned by the object factory.
An instance of the callback class is passed to .readObject
When the stream is ready to extract the state of an object, it invokes on the wrapper class. The implementation of decodes the read read
object's state as directed by the .data encoding rules for classes
The callback object passed to is invoked, passing the instance of the wrapper object. All other callback objects representing readObject
the same instance in the stream (in case of object graphs) are invoked with the same wrapper object.

If your class definitions use , you must also supply an implementation of when . compact type IDs CompactIdResolver initializing the communicator
This object is responsible for translating numeric type IDs into their string equivalents.

See Also

Client-Side Slice-to-PHP Mapping
Data Encoding
Data Encoding for Classes
C++ Mapping for Classes
Communicator Initialization

https://doc.zeroc.com/pages/viewpage.action?pageId=14680617#C++MappingforClasses-ClassFactoriesinC++
https://doc.zeroc.com/display/Ice35/Data+Encoding+for+Classes
https://doc.zeroc.com/display/Ice35/Classes+with+Compact+Type+IDs
https://doc.zeroc.com/display/Ice35/Communicator+Initialization
https://doc.zeroc.com/display/Ice35/Client-Side+Slice-to-PHP+Mapping
https://doc.zeroc.com/display/Ice35/Data+Encoding
https://doc.zeroc.com/display/Ice35/Data+Encoding+for+Classes
https://doc.zeroc.com/pages/viewpage.action?pageId=14680617
https://doc.zeroc.com/display/Ice35/Communicator+Initialization

	Intercepting Object Insertion and Extraction in C++

