
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Operations
On this page:

Parameters and Return Values
Optional Parameters and Return Values
Style of Operation Definition
Overloading Operations
Idempotent Operations

Parameters and Return Values
An operation definition must contain a return type and zero or more parameter definitions. For example, in the interface, the Clock getTime
operation has a return type of and the operation has a return type of . You must use to indicate that an operation TimeOfDay setTime void void
returns no value — there is no default return type for Slice operations.

An operation can have one or more input parameters. For example, accepts a single input parameter of type called . Of setTime TimeOfDay time
course, you can use multiple input parameters:

Slice

interface CircadianRhythm {
 void setSleepPeriod(TimeOfDay startTime, TimeOfDay stopTime);
 // ...
};

Note that the parameter name (as for Java) is mandatory. You cannot omit the parameter name, so the following is in error:

Slice

interface CircadianRhythm {
 void setSleepPeriod(TimeOfDay, TimeOfDay); // Error!
 // ...
};

By default, parameters are sent from the client to the server, that is, they are input parameters. To pass a value from the server to the client, you can
use an output parameter, indicated by the keyword. For example, an alternative way to define the operation in the interface out getTime Clock
would be:

Slice

void getTime(out TimeOfDay time);

This achieves the same thing but uses an output parameter instead of the return value. As with input parameters, you can use multiple output
parameters:

Slice

interface CircadianRhythm {
 void setSleepPeriod(TimeOfDay startTime, TimeOfDay stopTime);
 void getSleepPeriod(out TimeOfDay startTime, out TimeOfDay stopTime);
 // ...
};

If you have both input and output parameters for an operation, the output parameters must follow the input parameters:

https://doc.zeroc.com/display/Ice35/Interfaces%2C+Operations%2C+and+Exceptions
https://doc.zeroc.com/display/Ice35/Interfaces%2C+Operations%2C+and+Exceptions

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

Slice

void changeSleepPeriod(TimeOfDay startTime, TimeOfDay stopTime, // OK
 out TimeOfDay prevStartTime, out TimeOfDay prevStopTime);

void changeSleepPeriod(out TimeOfDay prevStartTime, out TimeOfDay prevStopTime, // Error
 TimeOfDay startTime, TimeOfDay stopTime);

Slice does not support parameters that are both input and output parameters (call by reference). The reason is that, for remote calls, reference
parameters do not result in the same savings that one can obtain for call by reference in programming languages. (Data still needs to be copied in
both directions and any gains in marshaling efficiency are negligible.) Also, reference (or input-output) parameters result in more complex language
mappings, with concomitant increases in code size.

Optional Parameters and Return Values
As of Ice 3.5, an operation's return value and parameters may be declared as to indicate that a program can leave their values unset. optional
Parameters not declared as optional are known as parameters; a program must supply legal values for all required parameters. In the required
discussion below, we use to refer to input parameters, output parameters, and return values.parameter

A unique, non-negative integer must be assigned to each optional parameter:tag

Slice

optional(3) bool example(optional(2) string name, out optional(1) int value);

The scope of a tag is limited to its operation and has no effect on other operations.

An operation's signature can include any combination of required and optional parameters, but output parameters still must follow input parameters:

Slice

bool example(string name, optional(3) string referrer, out optional(1) string promo, out int id);

Language mappings specify an API for passing optional parameters and testing whether a parameter is present. Refer to the language mapping
sections for more details on the optional parameter API.

Style of Operation Definition
As you would expect, language mappings follow the style of operation definition you use in Slice: Slice return types map to programming language
return types, and Slice parameters map to programming language parameters.

For operations that return only a single value, it is common to return the value from the operation instead of using an out-parameter. This style maps
naturally into all programming languages. Note that, if you use an out-parameter instead, you impose a different API style on the client: most
programming languages permit the return value of a function to be ignored whereas it is typically not possible to ignore an output parameter.

For operations that return multiple values, it is common to return all values as out-parameters and to use a return type of . However, the rule is void
not all that clear-cut because operations with multiple output values can have one particular value that is considered more "important" than the
remainder. A common example of this is an iterator operation that returns items from a collection one-by-one:

Slice

bool next(out RecordType r);

A well-behaved program must test for the presence of an optional parameter and not assume that it is always set. Dereferencing an unset
optional parameter causes a run-time error.

https://doc.zeroc.com/display/Ice35/Optional+Values

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

The operation returns two values: the record that was retrieved and a Boolean to indicate the end-of-collection condition. (If the return value is next f
, the end of the collection has been reached and the parameter has an undefined value.) This style of definition can be useful because it alse r

naturally fits into the way programmers write control structures. For example:

while (next(record))
 // Process record...

if (next(record))
 // Got a valid record...

Overloading Operations
Slice does not support any form of overloading of operations. For example:

Slice

interface CircadianRhythm {
 void modify(TimeOfDay startTime, TimeOfDay endTime);
 void modify(TimeOfDay startTime, // Error
 TimeOfDay endTime,
 out timeOfDay prevStartTime,
 out TimeOfDay prevEndTime);
};

Operations in the same interface must have different names, regardless of what type and number of parameters they have. This restriction exists
because overloaded functions cannot sensibly be mapped to languages without built-in support for overloading.

Idempotent Operations
Some operations, such as in the interface, do not modify the state of the object they operate on. They are the conceptual equivalent getTime Clock
of C++ member functions. Similary, does modify the state of the object, but is idempotent. You can indicate this in Slice as follows:const setTime

Slice

interface Clock {
 idempotent TimeOfDay getTime();
 idempotent void setTime(TimeOfDay time);
};

This marks the and operations as idempotent. An operation is idempotent if two successive invocations of the operation have the getTime setTime
same effect as a single invocation. For example, is an idempotent operation because it does not matter whether it is executed once or twice x = 1;
— either way, ends up with the value 1. On the other hand, is not an idempotent operation because executing it twice results in a x x += 1;
different value for than executing it once. Obviously, any read-only operation is idempotent.x

The keyword is useful because it allows the Ice run time to be more aggressive when performing to recover from idempotent automatic retries
errors. Specifically, Ice guarantees semantics for operation invocations:at-most-once

For normal (not idempotent) operations, the Ice run time has to be conservative about how it deals with errors. For example, if a client sends
an operation invocation to a server and then loses connectivity, there is no way for the client-side run time to find out whether the request it
sent actually made it to the server. This means that the run time cannot attempt to recover from the error by re-establishing a connection
and sending the request a second time because that could cause the operation to be invoked a second time and violate at-most-once
semantics; the run time has no option but to report the error to the application.

Name mangling is not an option in this case: while it works fine for compilers, it is unacceptable to humans.

https://doc.zeroc.com/display/Ice35/Interfaces%2C+Operations%2C+and+Exceptions
https://doc.zeroc.com/display/Ice35/Automatic+Retries

Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

For operations, on the other hand, the client-side run time can attempt to re-establish a connection to the server and safely idempotent
send the failed request a second time. If the server can be reached on the second attempt, everything is fine and the application never
notices the (temporary) failure. Only if the second attempt fails need the run time report the error back to the application. (The number of
retries can be increased with an Ice configuration parameter.)

See Also

Interfaces, Operations, and Exceptions
User Exceptions
Run-Time Exceptions
Proxies
Interface Inheritance
Automatic Retries
Optional Values

https://doc.zeroc.com/display/Ice35/Interfaces%2C+Operations%2C+and+Exceptions
https://doc.zeroc.com/display/Ice35/User+Exceptions
https://doc.zeroc.com/display/Ice35/Run-Time+Exceptions
https://doc.zeroc.com/display/Ice35/Proxies
https://doc.zeroc.com/display/Ice35/Interface+Inheritance
https://doc.zeroc.com/display/Ice35/Automatic+Retries
https://doc.zeroc.com/display/Ice35/Optional+Values

	Operations

