
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Classes Versus Structures
One obvious question to ask is: why does Ice provide as well as classes, when classes obviously can be used to model structures? The structures
answer has to do with the cost of implementation: classes provide a number of features that are absent for structures:

Classes support inheritance.
Classes can be self-referential.
Classes can have .operations
Classes can .implement interfaces

Obviously, an implementation cost is associated with the additional features of classes, both in terms of the size of the generated code and the
amount of memory and CPU cycles consumed at run time. On the other hand, structures are simple collections of values ("plain old structs") and are
implemented using very efficient mechanisms. This means that, if you use structures, you can expect better performance and smaller memory
footprint than if you would use classes (especially for languages with direct support for "plain old structures", such as C++ and C#). Use a class only
if you need at least one of its more powerful features.

See Also

Structures
Classes with Operations
Classes Implementing Interfaces

https://doc.zeroc.com/display/Ice35/Structures
https://doc.zeroc.com/display/Ice35/Classes+with+Operations
https://doc.zeroc.com/display/Ice35/Classes+Implementing+Interfaces
https://doc.zeroc.com/display/Ice35/Structures
https://doc.zeroc.com/display/Ice35/Classes+with+Operations
https://doc.zeroc.com/display/Ice35/Classes+Implementing+Interfaces

	Classes Versus Structures

