
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Pass-by-Value Versus Pass-by-Reference
As we saw in , classes naturally support pass-by-value semantics: passing a class transmits the data members of the class Self-Referential Classes
to the receiver. Any changes made to these data members by the receiver affect only the receiver's copy of the class; the data members of the
sender's class are not affected by the changes made by the receiver.

In addition to passing a class by value, you can pass a class by reference. For example:

Slice

class TimeOfDay {
 short hour;
 short minute;
 short second;
 string format();
};

interface Example {
 TimeOfDay* get(); // Note: returns a proxy!
};

Note that the operation returns a to a class and not a instance itself. The semantics of this are as follows:get proxy TimeOfDay TimeOfDay

When the client receives a proxy from the call, it holds a proxy that differs in no way from an ordinary proxy for an interface.TimeOfDay get
The client can invoke operations via the proxy, but access the data members. This is because proxies do not have the concept of cannot
data members, but represent interfaces: even though the class has data members, only its can be accessed via a TimeOfDay operations
the proxy.

The net effect is that, in the preceding example, the server holds an instance of the class. A proxy for that instance was passed to the TimeOfDay
client. The only thing the client can do with this proxy is to invoke the operation. The implementation of that operation is provided by the format
server and, when the client invokes , it sends an RPC message to the server just as it does when it invokes an operation on an interface. The format
implementation of the operation is entirely up to the server. (Presumably, the server will use the data members of the instance it format TimeOfDay
holds to return a string containing the time to the client.)

The preceding example looks somewhat contrived for classes only. However, it makes perfect sense if classes implement interfaces: parts of your
application can exchange class instances (and, therefore, state) by value, whereas other parts of the system can treat these instances as remote
interfaces.

For example:

Slice

interface Time {
 string format();
 // ...
};

class TimeOfDay implements Time {
 short hour;
 short minute;
 short second;
};

interface I1 {
 TimeOfDay get(); // Pass by value
 void put(TimeOfDay time); // Pass by value
};

interface I2 {
 Time* get(); // Pass by reference
};

In this example, clients dealing with interface are aware of the class and pass it by value whereas clients dealing with interface I1 TimeOfDay I2
deal only with the interface. However, the actual implementation of the interface in the server uses instances.Time Time TimeOfDay

https://doc.zeroc.com/display/Ice35/Self-Referential+Classes

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

Be careful when designing systems that use such mixed pass-by-value and pass-by-reference semantics. Unless you are clear about what parts of
the system deal with the interface (pass by reference) aspects and the class (pass by value) aspects, you can end up with something that is more
confusing than helpful.

A good example of putting this feature to use can be found in , which allows you to add classes to an existing interface to implement Freeze
persistence.

See Also

Self-Referential Classes
Freeze

https://doc.zeroc.com/display/Ice35/Freeze
https://doc.zeroc.com/display/Ice35/Self-Referential+Classes
https://doc.zeroc.com/display/Ice35/Freeze

	Pass-by-Value Versus Pass-by-Reference

