Ice 3.5.1 Documentation

Names and Scoping

Slice has a number of rules regarding identifiers. You will typically not have to concern yourself with these. However, occasionally, it is good to know
how Slice uses naming scopes and resolves identifiers.

On this page:

Naming Scope

Case Sensitivity
Qualified Names

Names in Nested Scopes
Introduced Identifiers
Name Lookup Rules

Naming Scope
The following Slice constructs establish a naming scope:

the global (file) scope
modules

interfaces

classes

structures

exceptions
parameter lists

Within a naming scope, identifiers must be unique, that is, you cannot use the same identifier for different purposes. For example:

Slice

interface Bad {
void op(int p, string p); /'l Error!

}s

Because a parameter list forms a naming scope, it is illegal to use the same identifier p for different parameters. Similarly, data members, operation
names, interface and class names, etc. must be unique within their enclosing scope.

Case Sensitivity

Identifiers that differ only in case are considered identical, so you must use identifiers that differ not only in capitalization within a naming scope. For
example:

Slice

struct Bad {

int m

string M /1l Error!
I

The Slice compiler also enforces consistent capitalization for identifiers. Once you have defined an identifier, you must use the same capitalization for
that identifier thereafter. For example, the following is in error:

Slice

sequence<string> StringSeq;

interface Bad {
stringSeq op(); /1 Error!
I

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

Note that identifiers must not differ from a Slice keyword in case only. For example, the following is in error:

Slice

interface Mdul e { /1 Error, "nodule" is a keyword
/1
I

Qualified Names
The scope-qualification operator : : allows you to refer to a type in a non-local scope. For example:
Slice

nodul e Types {
sequence<| ong> LongSeq;

I
nodul e MyApp {

sequence<Types: : LongSeq> Nunber Tr ee;
b

Here, the qualified name Types: : LongSeq refers to LongSeq defined in module Types. The global scope is denoted by a leading : : , so we could
also refer to LongSeq as : : Types: : LongSeq.

The scope-qualification operator also allows you to create mutually dependent interfaces that are defined in different modules. The obvious attempt
to do this fails:

Slice

nmodul e Parents {
interface Children::Child; // Syntax error!
interface Mdther {
Children:: Child* getChild();
s
interface Father {
Children:: Child* getChild();
s
I

nodul e Children {
interface Child {
Parents: : Mot her* get Mot her ();
Parents:: Fat her* getFather();
b
b

This fails because it is syntactically illegal to forward-declare an interface in a different module. To make it work, we must use a reopened module:

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

Slice

nodul e Children {
interface Child; /1 Forward decl aration

}

nmodul e Parents {
interface Mdther {

Children:: Child* getChild(); Il K
b
interface Father {
Children:: Child* getChild(); /Il K
b
}
nodul e Children { /| Reopen nodul e
interface Child { /'l Define Child
Par ent s: : Mot her* get Mot her ();
Parents: : Fat her* get Fat her();
h
b

While this technique works, it is probably of dubious value: mutually dependent interfaces are, by definition, tightly coupled. On the other hand,
modules are meant to be used to place related definitions into the same module, and unrelated definitions into different modules. Of course, this begs
the question: if the interfaces are so closely related that they depend on each other, why are they defined in different modules? In the interest of

clarity, you probably should avoid this construct, even though it is legal.

Names in Nested Scopes

Names defined in an enclosing scope can be redefined in an inner scope. For example, the following is legal:

Slice

nodul e Quter {
sequences<string> Seq;

nodul e I nner {
sequence<short > Seq;
b
b

Within module | nner , the name Seq refers to a sequence of shor t values and hides the definition of Qut er
definition by using explicit scope qualification, for example:

Slice

nmodul e Quter {
sequence<string> Seq;

nmodul e I nner {
sequence<short > Seq;

struct Confusing {
Seq a; /'l Sequence of short
;:Quter::Seq b; /'l Sequence of string

;1 Seq. You can still refer to the other

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

Needless to say, you should try to avoid such redefinitions — they make it harder for the reader to follow the meaning of a specification.

Same-named constructs cannot be nested inside each other. For example, a module named Mcannot (recursively) contain any construct also named !
. The same is true for interfaces, classes, structures, exceptions, and operations. For example, the following examples are all in error:

Slice

nmodul e M {
interface M{ /* ... */ }; /| Error!

interface | {

void I(); /I Error!

voi d op(string op); /1 Error!
b
struct S {

long s; Il Error, even if case differs!
b

}s

nodul e Quter {
nodul e I nner {
interface Quter { /1 Error!
/1

The reason for this restriction is that nested types that have the same name are difficult to map into some languages. For example, C++ and Java
reserve the name of a class as the name of the constructor, so an interface | could not contain an operation named | without artificial rules to avoid
the name clash.

Similarly, some languages (such as C# prior to version 2.0) do not permit a qualified name to be anchored at the global scope. If a nested module or
type is permitted to have the same name as the name of an enclosing module, it can become impossible to generate legal code in some cases.

In the interest of simplicity, Slice prohibits the name of a nested module or type to be the same as the name of one of its enclosing modules.

Introduced ldentifiers

Within a naming scope, an identifier is introduced at the point of first use; thereafter, within that naming scope, the identifier cannot change meaning.

For example:

Slice

nmodul e M {
sequence<string> Seq;

interface Bad {
Seq opl(); /1 Seq and opl introduced here
int Seq(); /1 Error, Seq has changed neaning
b
b

The declaration of op1 uses Seq as its return type, thereby introducing Seq into the scope of interface Bad. Thereafter, Seq can only be used as a
type name that denotes a sequence of strings, so the compiler flags the declaration of the second operation as an error.

Note that fully-qualified identifiers are not introduced into the current scope:

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

Slice

nodul e M {
sequence<string> Seq;

interface Bad {
::M:Seq opl(); // Only opl introduced here

int Seq(); I K
b
b
In general, a fully-qualified name (one that is anchored at the global scope and, therefore, begins with a : : scope resolution operator) does not
introduce any name into the current scope. On the other hand, a qualified name that is not anchored at the global scope introduces only the first

component of the name:

Slice

nmodul e M {
sequence<string> Seq;

interface Bad {
M :Seq opl(); /1 Mand opl introduced here, but not Seq

int Seq(); /Il K
3
}s

Name Lookup Rules

When searching for the definition of a name that is not anchored at the global scope, the compiler first searches backward in the current scope of a
definition of the name. If it can find the name in the current scope, it uses that definition. Otherwise, the compiler successively searches enclosing

scopes for the name until it reaches the global scope. Here is an example to illustrate this:

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

Slice

modul e ML {
sequence<doubl e> Seq;

nodul e M2 {
sequence<string> Seq; /1 OK, hides ::M.:: Seq

interface Base {

Seq opl(); /] Returns sequence of string
b
I
nodul e M3 {
interface Derived extends M::Base {
Seq op2(); /1 Returns sequence of double
b
sequence<bool > Seq; /1 OK, hides ::ML:: Seq
interface | {
Seq op(); /1 Returns sequence of bool
I

interface | {
Seq op(); /1 Returns sequence of double

}s
}

Note that M2: : Deri ved: : op2 returns a sequence of doubl e, even though ML: : Base: : opl returns a sequence of st ri ng. That is, the meaning
of a type in a base interface is irrelevant to determining its meaning in a derived interface — the compiler always searches for a definition only in the
current scope and enclosing scopes, and never takes the meaning of a name from a base interface or class.

See Also

® | exical Rules

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Lexical+Rules

	Names and Scoping

