
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Slice Source Files
Slice defines a number of rules for the naming and contents of Slice source files.

On this page:

File Naming
File Format
Preprocessing

Detecting Ice Versions
Detecting Slice Compilers

Definition Order

File Naming
Files containing Slice definitions must end in a file extension, for example, is a valid file name. Other file extensions are rejected by .ice Clock.ice
the compilers.

For case-insensitive file systems (such as DOS), the file extension may be written as uppercase or lowercase, so is legal. For case-Clock.ICE
sensitive file systems (such as Unix), is illegal. (The extension must be in lowercase.)Clock.ICE

File Format
Slice is a free-form language so you can use spaces, horizontal and vertical tab stops, form feeds, and newline characters to lay out your code in any
way you wish. (White space characters are token separators). Slice does not attach semantics to the layout of a definition. You may wish to follow the
style we have used for the Slice examples throughout this book.

Slice files can be ASCII text files or use the UTF-8 character encoding with a byte order marker (BOM) at the beginning of each file. However, Slice
identifiers are limited to ASCII letters and digits; non-ASCII letters can appear only in comments.

Preprocessing
Slice supports the same preprocessor directives as C++, so you can use directives such as and macro definitions. However, Slice permits #include

 directives only at the beginning of a file, before any Slice definitions.#include

If you use directives, it is a good idea to protect them with guards to prevent double inclusion of a file:#include

Slice

// File Clock.ice
#ifndef _CLOCK_ICE
#define _CLOCK_ICE

// #include directives here...
// Definitions here...

#endif _CLOCK_ICE

The following directive offers a simpler way to achieve the same result:#pragma

Slice

// File Clock.ice
#pragma once

// #include directives here...
// Definitions here...

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

#include directives permit a Slice definition to use types defined in a different source file. The Slice compilers parse all of the code in a source file,
including the code in subordinate files. However, the compilers generate code only for the top-level file(s) nominated on the command #include
line. You must separately compile subordinate files to obtain generated code for all the files that make up your Slice definition.#include

Note that you should avoid with double quotes:#include

Slice

#include "Clock.ice" // Not recommended!

While double quotes will work, the directory in which the preprocessor tries to locate the file can vary depending on the operating system, so the
included file may not always be found where you expect it. Instead, use angle brackets (); you can control which directories are searched for the <>
file with the of the Slice compiler. option-I

Also note that, if you include a path separator in a directive, you must use a forward slash:#include

Slice

#include <SliceDefs/Clock.ice> // OK

You cannot use a backslash in directives:#include

Slice

#include <SliceDefs\Clock.ice> // Illegal

Detecting Ice Versions

As of Ice 3.5, the Slice compilers define the preprocessor macro with a numeric representation of the Ice version. The value of __ICE_VERSION__
this macro is the same as the C++ macro . You can use this macro to make your Slice definitions backward-compatible with older ICE_INT_VERSION
Ice releases, while still taking advantage of newer Ice features when possible. For example, the Slice definition shown below makes use of custom
enumerator values:

Slice

#if defined(__ICE_VERSION__) && __ICE_VERSION__ >= 030500
enum Fruit { Apple, Pear = 3, Orange };
#else
enum Fruit { Apple, Pear, Orange };
#endif

Although this example is intended to show how to use the macro, it also highlights a potential pitfall that you must be aware of when ICE_VERSION
trying to maintain backward compatibility: the two definitions of are not wire-compatible. Fruit

Detecting Slice Compilers

As of Ice 3.5, each Slice compiler defines its own macro so that you can customize your Slice code for certain language mappings. The following
macros are defined by their respective compilers:

__SLICE2JAVA__
__SLICE2CPP__
__SLICE2CS__
__SLICE2PY__
__SLICE2PHP__
__SLICE2RB__
__TRANSFORMDB__
__DUMPDB__

https://doc.zeroc.com/display/Ice35/Using+the+Slice+Compilers
https://doc.zeroc.com/pages/viewpage.action?pageId=14680643

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

For example, .NET developers may elect to avoid the use of default values for structure members because the presence of default values changes
the C# mapping of the structure from to :struct class

Slice

struct Record {
 // ...
#if __SLICE2CS__
 bool active;
#else
 bool active = true;
#endif
};

Definition Order
Slice constructs, such as modules, interfaces, or type definitions, can appear in any order you prefer. However, identifiers must be declared before
they can be used.

See Also

Using the Slice Compilers

https://doc.zeroc.com/display/Ice35/Using+the+Slice+Compilers

	Slice Source Files

