
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Upgrading your Application from Ice 3.3
In addition to the information provided in , users who are upgrading from Ice 3.3 should also review this page.Upgrading your Application from Ice 3.4

On this page:

Backward compatibility of Ice versions
Source-code compatibility
Binary compatibility
On-the-wire compatibility
Database compatibility
Interface compatibility

IceGrid
IceStorm

Java language mapping changes in Ice 3.4
Metadata
Dictionaries
Request Contexts
Enumerations

Changes to the Java API for Freeze maps in Ice 3.4
General changes to Freeze maps in Java
Enhancements to Freeze maps in Java
Backward compatibility for Freeze maps in Java
Finalizers in Freeze

Freeze packaging changes in Ice 3.4
PHP changes in Ice 3.4

Static translation in PHP
Deploying a PHP application
Using communicators in PHP
Using registered communicators in PHP
PHP configuration
PHP namespaces
Run-time exceptions in PHP
Downcasting in PHP
Other API changes for PHP

Thread pool changes in Ice 3.4
IceSSL changes in Ice 3.4
Migrating IceStorm and IceGrid databases from Ice 3.3
Migrating Freeze databases from Ice 3.3
Removed APIs in Ice 3.4.0
Deprecated APIs in Ice 3.4.0

Backward compatibility of Ice versions
A discussion of backward compatibility in Ice involves many factors.

Source-code compatibility

Ice maintains source-code compatibility between a patch release (e.g., 3.4.2) and the most recent minor release (e.g., 3.4.0), but does not guarantee
source-code compatibility between minor releases (e.g., between 3.4 and 3.5).

The subsections below describe the significant API changes in this release that may impact source-code compatibility. Furthermore, the subsections
 and summarize additional changes to Ice APIs that could affect your application.Removed APIs in Ice 3.4.0 Deprecated APIs in Ice 3.4.0

Binary compatibility

As for source-code compatibility, Ice maintains backward binary compatibility between a patch release and the most recent minor release, but does
not guarantee binary compatibility between minor releases.

The requirements for upgrading depend on the language mapping used by your application:

For statically-typed languages (C++, Java, .NET), the application must be recompiled.

For scripting languages that use static translation, your Slice files must be recompiled.

No action is necessary for a Python or Ruby script that loads its Slice files dynamically.

https://doc.zeroc.com/display/Ice35/Upgrading+your+Application+from+Ice+3.4

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

On-the-wire compatibility

Ice always maintains protocol ("on the wire") compatibility with prior releases. A client using Ice version can communicate with a server using Ice x
version and vice versa. y

Several features introduced in Ice 3.5 require a new version of the Ice encoding, encoding version 1.1. Older versions of Ice do not understand this
encoding: you need to use Ice encoding version 1.0 for communications between clients or servers using Ice 3.5 and clients and servers using older
Ice versions. See for details.Encoding Version 1.1

Database compatibility

Upgrading to a new minor release of Ice often includes an upgrade to the supported version of Berkeley DB. In turn, this may require an application
to migrate its databases, either because the format of Berkeley DB's database files has changed, or due to a change in the schema of the data stored
in those databases.

For example, if your application uses Freeze, it may be necessary for you to migrate your databases even if your schema has not changed.

Certain Ice services also use Freeze in their implementation. If your application uses these services (IceGrid and IceStorm), it may be necessary for
you to migrate their databases as well.

Please refer to the relevant subsections below for migration instructions.

Interface compatibility

Although Ice always maintains compatibility at the protocol level, changing Slice definitions can also lead to incompatibilities. As a result, Ice
maintains interface compatibility between a patch release and the most recent minor release, but does not guarantee compatibility between minor
releases.

This issue is particularly relevant if your application uses Ice services such as IceGrid or IceStorm, as a change to an interface in one of these
services may adversely affect your application.

Interface changes in an Ice service can also impact compatibility with its administrative tools, which means it may not be possible to administer an Ice
3.4.x service using a tool from a previous minor release (or vice-versa).

IceGrid

Starting with Ice 3.2.0, IceGrid registries and nodes are interface-compatible. For example, you can use an IceGrid node from Ice 3.2 with a registry
from Ice 3.4.

IceGrid registry replication is only supported between registries using Ice 3.3 or later.

An IceGrid node using Ice 3.3 or later is able to activate a server that uses Ice 3.2. The reverse is also true: an IceGrid node from Ice 3.2 is able to
activate a server built with Ice 3.3 or later, but only if the server's configuration properties do not rely on features added after Ice 3.2 (such as the
ability to escape characters in property names and values).

IceStorm

Topic linking is supported between all IceStorm versions released after 3.0.0.

Java language mapping changes in Ice 3.4
The Java2 language mapping, which was deprecated in Ice 3.3, is no longer supported. The Slice compiler and Ice API now use the Java5 language
mapping exclusively, therefore upgrading to Ice 3.4 may require modifications to your application's source code. The subsections below discuss the
language mapping features that are affected by this change and describe how to modify your application accordingly.

Metadata

The global metadata directives and are no longer supported and should be removed from your Slice files. The Slice java:java2 java:java5
compiler now emits a warning about these directives.

Support for the portable metadata syntax has also been removed. This syntax allowed Slice definitions to define custom type metadata that the Slice
compiler would translate to match the desired target mapping. For example:

https://doc.zeroc.com/display/Doc/Encoding+Version+1.1

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

Slice

["java:type:{java.util.ArrayList}"] sequence<String> StringList;

The braces surrounding the custom type directed the Slice compiler to use in the java.util.ArrayList java.util.ArrayList<String>
Java5 mapping and in the Java2 mapping.java.util.ArrayList

All uses of the portable metadata syntax must be changed to use the corresponding Java5 equivalent.

Dictionaries

Now that Slice dictionary types use the Java5 mapping, recompiling your Slice files and your application may cause the Java compiler to emit
"unchecked" warnings. This occurs when your code attempts to assign an untyped collection class such as to a generic type such java.util.Map
as . Consider the following example:java.util.Map<String, String>

Slice

dictionary<string, int> ValueMap;

interface Table
{
 void setValues(ValueMap m);
};

A Java2 application might have used these Slice definitions as shown below:

Java

java.util.Map values = new java.util.HashMap();
values.put(...);

TablePrx proxy = ...;
proxy.setValues(values); // Warning

The call to is an example of an unchecked conversion. We recommend that you compile your application using the compiler option setValues
shown below:

javac -Xlint:unchecked ...

This option causes the compiler to generate descriptive warnings about occurrences of unchecked conversions to help you find and correct the
offending code.

Request Contexts

The Slice type for , , is defined as follows:request contexts Ice::Context

Slice

module Ice
{
 dictionary<string, string> Context;
};

As a dictionary, the type is subject to the same issues regarding unchecked conversions described for . For example, each Context #Dictionaries
proxy operation maps to two overloaded methods, one that omits the trailing parameter and one that includes it:Context

https://doc.zeroc.com/display/Ice35/Request+Contexts

Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

Java

interface TablePrx
{
 void setValues(java.util.Map<String, Integer> m); // No context

 void setValues(java.util.Map<String, Integer> m,
 java.util.Map<String, String> ctx);
}

If your proxy invocations make use of this parameter, you will need to change your code to use the generic type shown above in order to eliminate
unchecked conversion warnings.

Enumerations

The Java2 language mapping for a Slice enumeration generated a class whose API differed in several ways from the standard Java5 enum type.
Consider the following enumeration:

Slice

enum Color { red, green, blue };

The Java2 language mapping for is shown below:Color

Java

public final class Color
{
 // Integer constants
 public static final int _red = 0;
 public static final int _green = 1;
 public static final int _blue = 2;

 // Enumerators
 public static final Color red = ...;
 public static final Color green = ...;
 public static final Color blue = ...;

 // Helpers
 public static Color convert(int val);
 public static Color convert(String val);
 public int value();

 ...
}

The first step in migrating to the Java5 mapping for enumerations is to modify all statements that use an enumerator. Before Java added switch
native support for enumerations, the statement could only use the integer value of the enumerator and therefore the Java2 mapping supplied switch
integer constants for use in statements. For example, here is a statement that uses the Java2 mapping:case switch

Ice 3.5.1 Documentation

5 Copyright © 2017, ZeroC, Inc.

Java

Color col = ...;
switch(col.value())
{
case Color._red:
 ...
 break;
case Color._green:
 ...
 break;
case Color._blue:
 ...
 break;
}

The Java5 mapping eliminates the integer constants because Java5 allows enumerators to be used in statements. The resulting code becomes case
much easier to read and write:

Java

Color col = ...;
switch(col)
{
case red:
 ...
 break;
case green:
 ...
 break;
case blue:
 ...
 break;
}

The next step is to replace any uses of the or methods with their Java5 equivalents. The base class for all Java5 enumerations (value convert jav
) supplies methods with similar functionality:a.lang.Enum

Java

static Color[] values() // replaces convert(int)
static Color valueOf(String val) // replaces convert(String)
int ordinal() // replaces value()

For example, here is the Java5 code to convert an integer into its equivalent enumerator:

Java

Color r = Color.values()[0]; // red

Note however that the method in the Java2 mapping returned null for an invalid argument, whereas the Java5 enum method convert(String) val
 raises instead.ueOf(String) IllegalArgumentException

Refer to the for more details on the mapping for enumerations.manual

Changes to the Java API for Freeze maps in Ice 3.4

https://doc.zeroc.com/display/Ice35/Java+Mapping+for+Enumerations

Ice 3.5.1 Documentation

6 Copyright © 2017, ZeroC, Inc.

The Java API for has been revised to used Java5 generic types and enhanced to provide additional functionality. This section describes Freeze maps
these changes in detail and explains how to migrate your Freeze application to the API in Ice 3.4.

General changes to Freeze maps in Java

The Freeze API is now entirely type-safe, which means compiling your application against Ice 3.4 is likely to generate unchecked conversion
warnings. The generated class for a Freeze map now implements the interface, where is the key type and is the java.util.SortedMap<K, V> K V
value type. As a result, applications that relied on the untyped API (where all keys and values were treated as instances of SortedMap java.lang.

) will encounter compiler warnings in Ice 3.4.Object

For example, an application might have iterated over the entries in a map as follows:

Java

// Old API
Object key = new Integer(5);
Object value = new Address(...);
myMap.put(key, value);
java.util.Iterator i = myMap.entrySet().iterator();
while (i.hasNext())
{
 java.util.Map.Entry e = (java.util.Map.Entry)i.next();
 Integer myKey = (Integer)e.getKey();
 Address myValue = (Address)e.getValue();
 ...
}

This code will continue to work, but the new API is both type-safe and self-documenting:

Java

// New API
int key = 5;
Address value = new Address(...);
myMap.put(key, value); // The key is autoboxed to Integer.
for (java.util.Map.Entry<Integer, Address> e : myMap.entrySet())
{
 Integer myKey = e.getKey();
 Address myValue = e.getValue();
 ...
}

Although migrating to the new API may require some effort, the benefits are worthwhile because your code will be easier to read and less prone to
defects. You can also take advantage of the "autoboxing" features in Java5 that automatically convert values of primitive types (such as) into int
their object equivalents (such as).Integer

Please refer to the for complete details on the new API.manual

Enhancements to Freeze maps in Java

Java6 introduced the interface, which extends to add some useful new methods. Although java.util.NavigableMap java.util.SortedMap
the Freeze map API cannot implement directly because Freeze must remain compatible with Java5, we have added java.util.NavigableMap
the interface to provide much of the same functionality. A generated Freeze map class implements , as do Freeze.NavigableMap NavigableMap
the sub map views returned by map methods such as . The interface is described in the , and you can also refer to headMap NavigableMap manual
the Java6 API documentation.

Backward compatibility for Freeze maps in Java

The Freeze Map API related to indices underwent some significant changes in order to improve type safety and avoid unchecked conversion
warnings. These changes may cause compilation failures in a Freeze application.

https://doc.zeroc.com/display/Ice35/Freeze+Maps
https://doc.zeroc.com/display/Ice35/Using+a+Freeze+Map+in+Java#UsingaFreezeMapinJava-map
https://doc.zeroc.com/display/Ice35/Using+a+Freeze+Map+in+Java#UsingaFreezeMapinJava-map

Ice 3.5.1 Documentation

7 Copyright © 2017, ZeroC, Inc.

In the previous API, index comparator objects were supplied to the Freeze map constructor in a map (in Java5 syntax, this comparators map would
have the type) in which the index name was the key. As part of our efforts to improve type java.util.Map<String, java.util.Comparator>
safety, we also wanted to use the fully-specified type for each index comparator (such as). However, given java.util.Comparator<Integer>
that each index could potentially use a different key type, it is not possible to retain the previous API while remaining type-safe.

Consequently, the index comparators are now supplied as data members of a static nested class of the Freeze map named . If IndexComparators
your application supplied custom comparators for indices, you will need to revise your code to use instead. For example:IndexComparators

Java

// Old API
java.util.Map indexComparators = new java.util.HashMap();
indexComparators.put("index", new MyComparator());
MyMap map = new MyMap(..., indexComparators);

// New API
MyMap.IndexComparators indexComparators = new MyMap.IndexComparators();
indexComparators.valueComparator = new MyComparator();
MyMap map = new MyMap(..., indexComparators);

We also encourage you to modify the definition of your comparator classes to use the Java5 syntax, as shown in the example below:

Java

// Old comparator
class IntComparator implements java.util.Comparator
{
 public int compare(Object o1, Object o2)
 {
 return ((Integer)o1).compareTo(o2);
 }
}

// New comparator
class IntComparator implements java.util.Comparator<Integer>
{
 public int compare(Integer i1, Integer i2)
 {
 return i1.compareTo(i2);
 }
}

The second API change that might cause compilation failures is the removal of the following methods:

Java

java.util.SortedMap headMapForIndex(String name, Object key);
java.util.SortedMap tailMapForIndex(String name, Object key);
java.util.SortedMap subMapForIndex(String name, Object from, Object to);
java.util.SortedMap mapForIndex(String name);

Again, this API cannot be retained in a type-safe fashion, therefore now generates equivalent (and type-safe) methods for each slice2freezej
index in the Freeze map class.

Please refer to the for complete details on the new API.manual

Finalizers in Freeze

https://doc.zeroc.com/display/Ice35/Using+a+Freeze+Map+in+Java#UsingaFreezeMapinJava-indices

Ice 3.5.1 Documentation

8 Copyright © 2017, ZeroC, Inc.

In previous releases, Freeze for Java used finalizers to close objects such as maps and connections that the application neglected to close. Most of
these finalizers have been removed in Ice 3.4, and the only remaining finalizers simply log warning messages to alert you to the fact that connections
and iterators are not being closed explicitly. Note that, given the uncertain nature of Java finalizers, it is quite likely that the remaining finalizers will
not be executed.

Freeze packaging changes in Ice 3.4
All Freeze-related classes are now stored in a separate JAR file named . As a result, you may need to update your build scripts, Freeze.jar
deployment configuration, and run-time environment to include this additional JAR file.

PHP changes in Ice 3.4
The Ice extension for PHP has undergone many changes in this release. The subsections below describe these changes in detail. Refer to the PHP

 for more information about the language mapping.Mapping

Static translation in PHP

In prior releases, Slice files were deployed with the application and loaded at Web server startup by the Ice extension. Before each page request, the
extension directed the PHP interpreter to parse the code that was generated from the Slice definitions.

In this release, Slice files must be translated using the new compiler . This change offers several advantages:slice2php

Applications may have more opportunities to improve performance through the use of opcode caching.

It is no longer necessary to restart the Web server when you make changes to your Slice definitions, which is especially useful during
development.

Errors in your Slice files can now be discovered in your development environment, rather than waiting until the Web server reports a failure
and then reviewing the server log to determine the problem.

The development process becomes simpler because you can easily examine the generated code if you have questions about the API or
language mapping rules.

PHP scripts can now use all of the Ice local exceptions. In prior releases, only a subset of the local exception types were available, and all
others were mapped to . See the section below for more information.Ice_UnknownLocalException Run-time exceptions in PHP

All of the Slice files for Ice and Ice services are translated during an Ice build and available for inclusion in your application. At a minimum, you must
include the file :Ice.php

PHP

require 'Ice.php';

Ice.php contains definitions for core Ice types and includes a minimal set of generated files. To use an Ice service such as , include the IceStorm
appropriate generated file:

PHP

require 'Ice.php';
require 'IceStorm/IceStorm.php';

Deploying a PHP application

With the transition to static code generation, you no longer need to deploy Slice files with your application. Instead, you will need to deploy the PHP
code generated from your Slice definitions, along with , the generated code for the Ice core, and the generated code for any Ice services Ice.php
your application might use.

Using communicators in PHP

https://doc.zeroc.com/display/Ice35/PHP+Mapping
https://doc.zeroc.com/display/Ice35/PHP+Mapping
https://doc.zeroc.com/display/Ice35/slice2php+Command-Line+Options
https://doc.zeroc.com/display/Ice35/IceStorm

Ice 3.5.1 Documentation

9 Copyright © 2017, ZeroC, Inc.

In prior releases, each PHP page request could access a single Ice communicator via the global variable. The configuration of this $ICE
communicator was derived from the profile that the script loaded via the function. The communicator was created on demand Ice_loadProfile
when was first used and destroyed automatically at the end of the page request.$ICE

In this release, a PHP script must create its own communicator using an API that is similar to other Ice language mappings:

PHP

function Ice_initialize()
function Ice_initialize($args)
function Ice_initialize($initData)
function Ice_initialize($args, $initData)

Ice_initialize creates a new communicator using the configuration provided in the optional arguments. is an array of strings representing $args
command-line options, and is an instance of .$initData Ice_InitializationData

An application that requires no configuration can initialize a communicator as follows:

PHP

$communicator = Ice_initialize();

More elaborate configuration scenarios are described in the section below.#PHP configuration

A script may optionally destroy its communicator:

PHP

$communicator->destroy();

At the completion of a page request, Ice by default automatically destroys any communicator that was not explicitly destroyed.

Using registered communicators in PHP

PHP applications may benefit from the ability to use a communicator instance in multiple page requests. Reusing a communicator allows the
application to minimize the overhead associated with the communicator lifecycle, including such activities as opening and closing connections to Ice
servers.

This release includes new APIs for registering a communicator in order to prevent Ice from destroying it automatically at the completion of a page
request. For example, a session-based application can create a communicator, establish a session, and register the communicator. In Glacier2
subsequent page requests, the PHP session can retrieve its communicator instance and continue using the Glacier2 session.

The provides more information on this feature, and a new sample program can be found in .manual Glacier2/hello

PHP configuration

Prior releases supported four INI settings in PHP's configuration file:

ice.config
ice.options
ice.profiles
ice.slice

The directive is no longer supported since Slice definitions are now compiled statically. The remaining options are still supported but ice.slice
their semantics are slightly different. They no longer represent the configuration of a communicator; instead, they define property sets that a script
can retrieve and use to initialize a communicator.

The global INI directives and configure the default property set. The directive can optionally nominate a ice.config ice.options ice.profiles
separate file that defines any number of named profiles, each of which configures a property set.

As before, the profiles use an INI file syntax:

https://doc.zeroc.com/display/Ice35/Glacier2
https://doc.zeroc.com/display/Ice35/Application+Notes+for+PHP#ApplicationNotesforPHP-registered

Ice 3.5.1 Documentation

10 Copyright © 2017, ZeroC, Inc.

[Name1]
config=file1
options="--Ice.Trace.Network=2 ..."

[Name2]
config=file2
options="--Ice.Trace.Locator=1 ..."

A new directive, , overwrites the value of the directive as a security measure. This directive has a default ice.hide_profiles ice.profiles
value of 1, meaning it is enabled by default.

A script can obtain a property set using the new function . Called without an argument (or with an empty string), the function Ice_getProperties
returns the default property set:

PHP

$props = Ice_getProperties();

Alternatively, you can pass the name of the desired profile:

PHP

$props = Ice_getProperties("Name1");

The returned object is an instance of , which supports the standard Ice API.Ice_Properties

For users migrating from an earlier release, you can replace a call to as follows:Ice_loadProfile

PHP

// PHP - Old API
Ice_loadProfile('Name1');

// PHP - New API
$initData = new Ice_InitializationData;
$initData->properties = Ice_getProperties('Name1');
$ICE = Ice_initialize($initData);

(Note that it is not necessary to use the symbol for your communicator. However, using this symbol may ease your migration to this release.)$ICE

Ice_loadProfile also installed the PHP definitions corresponding to your Slice types. In this release you will need to add statements to require
include your generated code.

Finally, if you wish to manually configure a communicator, you can create a property set using :Ice_createProperties

PHP

function Ice_createProperties($args=null, $defaultProperties=null)

$args is an array of strings representing command-line options, and is an instance of that supplies $defaultProperties Ice_Properties
default values for properties.

As an example, an application can configure a communicator as shown below:

Ice 3.5.1 Documentation

11 Copyright © 2017, ZeroC, Inc.

PHP

$initData = new Ice_InitializationData;
$initData->properties = Ice_createProperties();
$initData->properties->setProperty("Ice.Trace.Network", "1");
...
$ICE = Ice_initialize($initData);

PHP namespaces

This release includes optional support for PHP namespaces, which was introduced in PHP 5.3. Support for PHP namespaces is disabled by default;
to enable it, you must build the Ice extension from source code with (see or in the USE_NAMESPACES=yes Make.rules Make.rules.mak php

 subdirectory). Note that the extension only supports one mapping style at a time; installing a namespace-enabled version of the extension /config
requires all Ice applications on the target Web server to use namespaces.

With namespace support enabled, you must modify your script to include a different version of the core Ice types:

PHP

require 'Ice_ns.php'; // Namespace version of Ice.php

You must also recompile your Slice files using the option to generate namespace-compatible code:-n

% slice2php -n MySliceFile.ice

This mapping translates Slice modules into PHP namespaces instead of using the "flattened" (underscore) naming scheme. For example, Ice_Prop
 becomes in the namespace mapping. However, applications can still refer to global Ice functions by their traditional erties \Ice\Properties

names (such as) or by their namespace equivalents ().Ice_initialize \Ice\initialize

Run-time exceptions in PHP

As mentioned earlier, prior releases of Ice for PHP only supported a limited subset of the standard . An occurrence of an run-time exceptions
unsupported local exception was mapped to .Ice_UnknownLocalException

This release adds support for all local exceptions, which allows an application to more easily react to certain types of errors:

PHP

try
{
 $proxy->sayHello();
}
catch(Ice_ConnectionLostException $ex)
{
 // Handle connection loss
}
catch(Ice_LocalException $ex)
{
 // Handle other errors
}

This change represents a potential backward compatibility issue: applications that previously caught may need to Ice_UnknownLocalException
be modified to catch the intended exception instead.

Downcasting in PHP

In prior releases, to downcast a proxy you had to invoke the or method on a proxy and supply a type ID:ice_checkedCast ice_uncheckedCast

https://doc.zeroc.com/display/Ice35/Run-Time+Exceptions

Ice 3.5.1 Documentation

12 Copyright © 2017, ZeroC, Inc.

PHP

$hello = $proxy->ice_checkedCast("::Demo::Hello");

This API is susceptible to run-time errors because no validation is performed on the type ID string. For example, renaming the interface to Hello Gre
 requires that you not only change all occurrences of to , but also fix any type ID strings that your code might eting Demo_Hello Demo_Greeting

have embedded. The PHP interpreter does not provide any assistance if you forget to make this change, and you will only discover it when that
particular line of code is executed and fails.

To improve this situation, a minimal class is now generated for each proxy type. The purpose of this class is to supply and checkedCast unchecked
 static methods:Cast

PHP

class Demo_HelloPrx
{
 public static function checkedCast($proxy, $facetOrCtx=null, $ctx=null);

 public static function uncheckedCast($proxy, $facet=null);
}

Now your application can downcast a proxy as follows:

PHP

$hello = Demo_HelloPrx::checkedCast($proxy);

You can continue to use and but we recommend migrating your application to the new methods.ice_checkedCast ice_uncheckedCast

Other API changes for PHP

This section describes additional changes to the Ice API in this release:

The global variable is no longer defined. An application must now initialize its own communicator as .$ICE described above

Removed the following communicator methods:

PHP

$ICE->setProperty()
$ICE->getProperty()

The equivalent methods are:

PHP

$communicator->getProperties()->setProperty()
$communicator->getProperties()->getProperty()

Removed the following global functions:

PHP

Ice_stringToIdentity()
Ice_identityToString()

Ice 3.5.1 Documentation

13 Copyright © 2017, ZeroC, Inc.

The equivalent methods are:

PHP

$communicator->stringToIdentity()
$communicator->identityToString()

These functions have also been removed:

PHP

Ice_loadProfile()
Ice_loadProfileWithArgs()
Ice_dumpProfile()

Refer to for more information.PHP configuration

Thread pool changes in Ice 3.4
A supports the ability to automatically grow and shrink as the demand for threads changes, within the limits set by the thread pool's thread pool
configuration. In prior releases, the rate at which a thread pool shrinks was not configurable, but Ice 3.4.0 introduces the property ThreadIdleTime
to allow you to specify how long a thread pool thread must remain idle before it terminates to conserve resources.

IceSSL changes in Ice 3.4
With the addition of the classes in this release, the structure has changed from a native type to a ConnectionInfo IceSSL::ConnectionInfo
Slice class. This change has several implications for existing applications:

As a Slice class, cannot provide the X509 certificate chain in its native form, therefore the chain is provided as IceSSL::ConnectionInfo
a sequence of strings representing the encoded form of each certificate. You can use language-specific facilities to convert these strings
back to certificate objects.

For your convenience, we have added a native subclass of called . This IceSSL::ConnectionInfo IceSSL::NativeConnectionInfo
class provides the certificate chain as certificate objects.

The interface now uses instead of . If your application configures a CertificateVerifier NativeConnectionInfo ConnectionInfo
custom certificate verifier, you will need to modify your implementation accordingly.

In C++, also note that is now managed by a smart pointer, therefore the signature of the certificate verifier NativeConnectionInfo
method becomes the following:

C++

virtual bool verify(const IceSSL::NativeConnectionInfoPtr&) = 0;

The helper function has been removed because its functionality has been replaced by the ogetConnectionInfo Connection::getInfo
peration. For example, in prior releases a C++ application would do the following:

C++

Ice::ConnectionPtr con = ...
IceSSL::ConnectionInfo info = IceSSL::getConnectionInfo(con);

Now the application should do this:

https://doc.zeroc.com/display/Ice35/The+Ice+Threading+Model
https://doc.zeroc.com/display/Ice35/Ice+Thread+Pool+Properties#IceThreadPoolProperties-Ice.ThreadPool.name.ThreadIdleTime

Ice 3.5.1 Documentation

14 Copyright © 2017, ZeroC, Inc.

1.
2.

3.

4.

5.
6.

7.

C++

Ice::ConnectionPtr con = ...
IceSSL::ConnectionInfoPtr info = IceSSL::ConnectionInfoPtr::dynamicCast(con->getInfo());

Alternatively, the application can downcast to the native class:

C++

Ice::ConnectionPtr con = ...
IceSSL::NativeConnectionInfoPtr info =
 IceSSL::NativeConnectionInfoPtr::dynamicCast(con->getInfo());

Migrating IceStorm and IceGrid databases from Ice 3.3
No changes were made to the database schema for IceStorm or IceGrid in this release. However, you still need to update your databases as
described .below

Migrating Freeze databases from Ice 3.3
No changes were made that would affect the content of your databases. However, we upgraded the version of Berkeley DB, therefore when Freeze
upgrading to Ice 3.4 you must also upgrade your database to the Berkeley DB 4.8 format. The only change that affects Freeze is the format of
Berkeley DB's log file.

The instructions below assume that the database environment to be upgraded resides in a directory named in the current working directory. For a db
more detailed discussion of database migration, please refer to the .Berkeley DB Upgrade Process

To migrate your database:

Shut down the old version of the application.
Make a backup copy of the database environment:

> cp -r db backup.db (Unix)
> xcopy /E db backup.db (Windows)

Locate the correct version of the Berkeley DB recovery tool (usually named). It is essential that you use the db_recover db_recover
executable that matches the Berkeley DB version of your existing Ice release. For Ice 3.3, use from Berkeley DB 4.6. You can db_recover
verify the version of your tool by running it with the option:db_recover -V

> db_recover -V

Use the db_recover tool to run recovery on the database environment:

> db_recover -h db

Recompile and install the new version of the application.
Force a checkpoint using the utility. Note that you must use the utility from Berkeley DB 4.8 when db_checkpoint db_checkpoint
performing this step.

> db_checkpoint -1 -h db

Restart the application.

https://doc.zeroc.com/display/Ice35/Freeze
http://download.oracle.com/docs/cd/E17076_02/html/upgrading/index.html

Ice 3.5.1 Documentation

15 Copyright © 2017, ZeroC, Inc.

Removed APIs in Ice 3.4.0
This section describes APIs that were deprecated in a previous release and have now been removed. Your application may no longer compile
successfully if it relies on one of these APIs.

The following APIs were removed in Ice 3.4.0:

Glacier2.AddUserToAllowCategories
Use instead.Glacier2.Filter.Category.AcceptUser

Glacier2.AllowCategories
Use instead.Glacier2.Filter.Category.Accept

Ice.UseEventLog
Ice services (applications that use the C++ class) always use the Windows event log by default.Ice::Service

Communicator::setDefaultContext
Communicator::getDefaultContext
ObjectPrx:ice_defaultContext
Use the communicator's instead.implicit request context

nonmutating keyword
This keyword is no longer supported.

Freeze.UseNonmutating
Support for this property was removed along with the keyword.nonmutating

Ice::NegativeSizeException
The run time now throws or instead.UnmarshalOutOfBoundsException MarshalException

slice2docbook
This utility is no longer included in Ice.

Ice::AMD_Array_Object_ice_invoke
A new overloading of in the class makes obsolete.ice_response AMD_Object_ice_invoke AMD_Array_Object_ice_invoke

Java2 mapping
The Java2 mapping is no longer supported. Refer to for more information.Java language mapping changes in Ice 3.4

Deprecated APIs in Ice 3.4.0
This section discusses APIs and components that are now deprecated. These APIs will be removed in a future Ice release, therefore we encourage
you to update your applications and eliminate the use of these APIs as soon as possible.

The following APIs were deprecated in Ice 3.4.0:

Asynchronous Method Invocation (AMI) interface
The AMI interface in Ice 3.3 and earlier is now deprecated for C++, Java, and C#.

Glacier2.AddSSLContext
Replaced by .Glacier2.AddConnectionContext

Standard platform methods should be used instead of the following:

Java

Ice.Object.ice_hash() // Use hashCode
Ice.ObjectPrx.ice_getHash() // Use hashCode
Ice.ObjectPrx.ice_toString() // Use toString

In Java, use and . In C#, use and . In Ruby, use instead of .hashCode toString GetHashCode ToString hash ice_getHash

Ice.Util.generateUUID()
In Java use . In C# use .java.util.UUID.randomUUID().toString() System.Guid.NewGuid.ToString()

https://doc.zeroc.com/display/Ice35/Glacier2+Properties#Glacier2Properties-Glacier2.Filter.Category.AcceptUser
https://doc.zeroc.com/display/Ice35/Glacier2+Properties#Glacier2Properties-Glacier2.Filter.Category.Accept
https://doc.zeroc.com/pages/viewpage.action?pageId=14680649#TheServerSidemainFunctioninC++-service
https://doc.zeroc.com/display/Ice35/Implicit+Request+Contexts
https://doc.zeroc.com/display/Ice35/Glacier2+Properties#Glacier2Properties-Glacier2.AddConnectionContext

	Upgrading your Application from Ice 3.3

