
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Building Ice for C++ for Windows Applications
This page describes the Ice source distribution, including information about compiler requirements, third-party dependencies, and instructions for
building and testing the distribution. If you prefer, you can download a that contains pre-compiled debug and release libraries, Windows installer
executables, and everything else necessary to build Ice applications on Windows.

 On this page:

Windows Build Requirements
Third-party Libraries
Monotonic Clock

Compiling and Testing Ice for C++ on Windows
Building Ice
Running the Test Suite
x64 Platform

Installing a C++ Source Build on Windows

Windows Build Requirements
Ice for C++ was extensively tested using the operating systems and compiler versions listed on our .platforms page

Third-party Libraries

Ice has dependencies on a number of third-party libraries:

Berkeley DB 5.3
 2.0expat

 0.9.8 or later (OpenSSL 1.0 or later recommended)OpenSSL
 1.0bzip2
 2.7.2 (with patches)mcpp

You do not need to build these packages yourself, as ZeroC supplies a that contains release and debug libraries for all of the third-Windows installer
party dependencies.

If you intend to build the third-party dependencies from source, we recommend downloading the . This archive contains Ice third-party source archive
the source distributions for each of the third-party dependencies, as well as required source patches and configuration instructions.

Monotonic Clock

Ice uses the QueryPerformanceCounter Windows API function to measure time with a monotonic clock. If you are experiencing timing
or performance issues, there are two knowledgebase articles that may be relevant for your system:

KB 896256
KB 895980

Compiling and Testing Ice for C++ on Windows

Building Ice

Using your favorite Zip tool, unzip the Ice source archive anywhere you like.

Open a command prompt that is configured for your target architecture. For example, when using Visual Studio 2010 or later, you have several
alternatives:

Visual Studio Command Prompt
Visual Studio x64 Win64 Command Prompt
Visual Studio x64 Cross Tools Command Prompt

Using the first configuration produces 32-bit binaries, while the second and third configurations produce 64-bit binaries.

You must be using a Windows x64 platform when compiling a 64-bit version of Ice.

http://www.zeroc.com/download.html
http://www.zeroc.com/platforms_3_5_1.html
http://www.oracle.com/us/products/database/berkeley-db/overview/index.htm
http://expat.sourceforge.net/
http://www.openssl.org/
http://www.bzip.org/
http://mcpp.sourceforge.net/
http://www.zeroc.com/download.html
http://www.zeroc.com/download.html
http://support.microsoft.com/?id=896256
http://support.microsoft.com/?id=895980

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

Change the working directory to . For example:Ice-3.5.1

> cd C:\Ice-3.5.1\cpp

Edit to establish your build configuration. The comments in the file provide more information.config\Make.rules.mak

Now you're ready to build Ice:

> nmake /f Makefile.mak

Running the Test Suite

Python is required to run the test suite.

Open a command prompt and change to the top-level Ice directory.

Add the directory of the third-party libraries to your .bin PATH

For x86 builds:

> set PATH= \bin;%PATH%ThirdPartyHome

For x64 builds:

> set PATH= \bin\x64;%PATH%ThirdPartyHome

You can now run the test suite. At the command prompt, execute:

> python allTests.py

If everything worked out, you should see lots of "ok" messages. In case of a failure, the tests abort with "failed".

If you want to try out any of the demos, make sure to update your environment variable to add the directory, which contains the Ice DLLs PATH bin
and executables.

x64 Platform

Building Ice on x64 with the Visual Studio C++ compiler is like building Ice on x86. You just need to perform the build in a "Visual Studio x64 Win64
Command Prompt", and not in a regular "Visual Studio Command Prompt".

Installing a C++ Source Build on Windows
Simply run nmake /f Makefile.mak install. This will install Ice in the directory specified by the variable in .prefix config\Make.rules.mak

After installation, if you plan to use the Visual Studio IDE for your Ice project, make sure to add the directory to the Visual C++ "Executable files", bin
the directory to the "Include files" and the directory to the "Library files" in the IDE.include lib

If you built a 64-bit version of Ice, the binaries are installed in the directory and the libraries are installed in the directory.bin\x64 lib\x64

You must be using a Windows x64 platform when compiling a 64-bit version of Ice.

http://www.python.org/download

	Building Ice for C++ for Windows Applications

