
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Ice-Communicator

Ice::Communicator

Overview

local interface Communicator

The central object in Ice. One or more communicators can be instantiated for an Ice application. Communicator instantiation is language-specific, and
not specified in Slice code.

Used By

Freeze::Connection::getCommunicator
Ice::ObjectAdapter::getCommunicator
IceBox::Service::start

See Also

Ice::Logger
Ice::Stats
Ice::ObjectAdapter
Ice::Properties
Ice::ObjectFactory

Operation Index

destroy — Destroy the communicator.
 — Shuts down this communicator's server functionality, which includes the deactivation of all object adapters.shutdown

 — Wait until the application has called (or).waitForShutdown shutdown destroy
 — Check whether communicator has been shut down.isShutdown

 — Convert a stringified proxy into a proxy.stringToProxy
 — Convert a proxy into a string.proxyToString

 — Convert a set of proxy properties into a proxy.propertyToProxy
 — Convert a proxy to a set of proxy properties.proxyToProperty

 — Convert a string into an identity.stringToIdentity
 — Convert an identity into a string.identityToString

 — Create a new object adapter.createObjectAdapter
 — Create a new object adapter with endpoints.createObjectAdapterWithEndpoints

 — Create a new object adapter with a router.createObjectAdapterWithRouter
 — Add an object factory to this communicator.addObjectFactory
 — Find an object factory registered with this communicator.findObjectFactory
 — Get the implicit context associated with this communicator.getImplicitContext

 — Get the properties for this communicator.getProperties
 — Get the logger for this communicator.getLogger

 — Get the statistics callback object for this communicator.getStats
 — Get the observer resolver object for this communicator.getObserver

 — Get the default router this communicator.getDefaultRouter
 — Set a default router for this communicator.setDefaultRouter
 — Get the default locator this communicator.getDefaultLocator
 — Set a default Ice locator for this communicator.setDefaultLocator
 — Get the plug-in manager for this communicator.getPluginManager

 — Flush any pending batch requests for this communicator.flushBatchRequests
 — Get a proxy to the main facet of the Admin object.getAdmin

 — Add a new facet to the Admin object.addAdminFacet
 — Remove the following facet to the Admin object.removeAdminFacet

 — Returns a facet of the Admin object.findAdminFacet

Operations

void destroy()

Destroy the communicator. This operation calls implicitly. Calling cleans up memory, and shuts down this communicator's client shutdown destroy
functionality and destroys all object adapters. Subsequent calls to are ignored.destroy

https://doc.zeroc.com/display/Ice35/Freeze-Connection#FreezeConnection-getCommunicator
https://doc.zeroc.com/display/Ice35/Ice-ObjectAdapter#IceObjectAdapter-getCommunicator
https://doc.zeroc.com/display/Ice35/IceBox-Service#IceBoxService-start
https://doc.zeroc.com/display/Ice35/Ice-Logger
https://doc.zeroc.com/display/Ice35/Ice-Stats
https://doc.zeroc.com/display/Ice35/Ice-ObjectAdapter
https://doc.zeroc.com/display/Ice35/Ice-Properties
https://doc.zeroc.com/display/Ice35/Ice-ObjectFactory

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

See Also

shutdown
Ice::ObjectAdapter::destroy

void shutdown()

Shuts down this communicator's server functionality, which includes the deactivation of all object adapters. (Attempts to use a deactivated object
adapter raise .) Subsequent calls to are ignored.Ice::ObjectAdapterDeactivatedException shutdown

After returns, no new requests are processed. However, requests that have been started before was called might still be active. shutdown shutdown
You can use to wait for the completion of all requestswaitForShutdown .

See Also

destroy
waitForShutdown
Ice::ObjectAdapter::deactivate

void waitForShutdown()

Wait until the application has called (or). On the server side, this operation blocks the calling thread until all currently-executing shutdown destroy
operations have completed. On the client side, the operation simply block until another thread has called or .shutdown destroy

A typical use of this operation is to call it from the main thread, which then waits until some other thread calls . After shut-down is complete, shutdown
the main thread returns and can do some cleanup work before it finally calls to shut down the client functionality, and then exits the destroy
application.

See Also

shutdown
destroy
Ice::ObjectAdapter::waitForDeactivate

bool isShutdown()

Check whether communicator has been shut down.

Return Value

True if the communicator has been shut down; false otherwise.

See Also

shutdown

Object* stringToProxy(string str)

Convert a stringified proxy into a proxy. For example, creates a proxy that refers to the MyCategory/MyObject:tcp -h some_host -p 10000
Ice object having an identity with a name "MyObject" and a category "MyCategory", with the server running on host "some_host", port 10000. If the
stringified proxy does not parse correctly, the operation throws one of , , or Ice::ProxyParseException Ice::EndpointParseException Ice::

. An appendix in the Ice manual provides a detailed description of the syntax supported by stringified proxies.IdentityParseException

Parameters

str — The stringified proxy to convert into a proxy.

Return Value

The proxy, or nil if is an empty string.str

See Also

proxyToString

string proxyToString(Object* obj)

Convert a proxy into a string.

Parameters

https://doc.zeroc.com/display/Ice35/Ice-ObjectAdapter#IceObjectAdapter-destroy
https://doc.zeroc.com/display/Ice35/Ice-ObjectAdapterDeactivatedException
https://doc.zeroc.com/display/Ice35/Ice-ObjectAdapter#IceObjectAdapter-deactivate
https://doc.zeroc.com/display/Ice35/Ice-ObjectAdapter#IceObjectAdapter-waitForDeactivate
https://doc.zeroc.com/display/Ice35/Ice-ProxyParseException
https://doc.zeroc.com/display/Ice35/Ice-EndpointParseException
https://doc.zeroc.com/display/Ice35/Ice-IdentityParseException
https://doc.zeroc.com/display/Ice35/Ice-IdentityParseException

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

obj — The proxy to convert into a stringified proxy.

Return Value

The stringified proxy, or an empty string if is nil.obj

See Also

stringToProxy

Object* propertyToProxy(string property)

Convert a set of proxy properties into a proxy. The "base" name supplied in the argument refers to a property containing a stringified property
proxy, such as . Additional properties configure local settings for the proxy, such as MyProxy=id:tcp -h localhost -p 10000 MyProxy.

. The "Properties" appendix in the Ice manual describes each of the supported proxy properties.PreferSecure=1

Parameters

property — The base property name.

Return Value

The proxy.

Ice::PropertyDict proxyToProperty(Object* proxy, string property)

Convert a proxy to a set of proxy properties.

Parameters

proxy — The proxy.
 — The base property name.property

Return Value

The property set.

Ice::Identity stringToIdentity(string str)

Convert a string into an identity. If the string does not parse correctly, the operation throws .Ice::IdentityParseException

Parameters

str — The string to convert into an identity.

Return Value

The identity.

See Also

identityToString

string identityToString(ident)Ice::Identity

Convert an identity into a string.

Parameters

ident — The identity to convert into a string.

Return Value

The "stringified" identity.

See Also

stringToIdentity

Ice::ObjectAdapter createObjectAdapter(string name)

https://doc.zeroc.com/display/Ice35/Ice+Slice+API#IceSliceAPI-PropertyDict
https://doc.zeroc.com/display/Ice35/Ice-Identity
https://doc.zeroc.com/display/Ice35/Ice-IdentityParseException
https://doc.zeroc.com/display/Ice35/Ice-Identity
https://doc.zeroc.com/display/Ice35/Ice-ObjectAdapter

Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

Create a new object adapter. The endpoints for the object adapter are taken from the property ..Endpointsname

It is legal to create an object adapter with the empty string as its name. Such an object adapter is accessible via bidirectional connections or by
collocated invocations that originate from the same communicator as is used by the adapter.

Attempts to create a named object adapter for which no configuration can be found raise .Ice::InitializationException

Parameters

name — The object adapter name.

Return Value

The new object adapter.

See Also

createObjectAdapterWithEndpoints
Ice::ObjectAdapter
Ice::Properties

Ice::ObjectAdapter createObjectAdapterWithEndpoints(string name, string endpoints)

Create a new object adapter with endpoints. This operation sets the property , and then calls . It is provided .Endpointsname createObjectAdapter
as a convenience function.

Calling this operation with an empty name will result in a UUID being generated for the name.

Parameters

name — The object adapter name.
 — The endpoints for the object adapter.endpoints

Return Value

The new object adapter.

See Also

createObjectAdapter
Ice::ObjectAdapter
Ice::Properties

Ice::ObjectAdapter createObjectAdapterWithRouter(string name, * rtr)Ice::Router

Create a new object adapter with a router. This operation creates a routed object adapter.

Calling this operation with an empty name will result in a UUID being generated for the name.

Parameters

name — The object adapter name.
 — The router.rtr

Return Value

The new object adapter.

See Also

createObjectAdapter
Ice::ObjectAdapter
Ice::Properties

void addObjectFactory(factory, string id)Ice::ObjectFactory

Add an object factory to this communicator. Installing a factory with an id for which a factory is already registered throws Ice::
.AlreadyRegisteredException

When unmarshaling an Ice object, the Ice run time reads the most-derived type id off the wire and attempts to create an instance of the type using a
factory. If no instance is created, either because no factory was found, or because all factories returned nil, the behavior of the Ice run time depends
on the format with which the object was marshaled:

https://doc.zeroc.com/display/Ice35/Ice-InitializationException
https://doc.zeroc.com/display/Ice35/Ice-ObjectAdapter
https://doc.zeroc.com/display/Ice35/Ice-Properties
https://doc.zeroc.com/display/Ice35/Ice-ObjectAdapter
https://doc.zeroc.com/display/Ice35/Ice-ObjectAdapter
https://doc.zeroc.com/display/Ice35/Ice-Properties
https://doc.zeroc.com/display/Ice35/Ice-ObjectAdapter
https://doc.zeroc.com/display/Ice35/Ice-Router
https://doc.zeroc.com/display/Ice35/Ice-ObjectAdapter
https://doc.zeroc.com/display/Ice35/Ice-Properties
https://doc.zeroc.com/display/Ice35/Ice-ObjectFactory
https://doc.zeroc.com/display/Ice35/Ice-AlreadyRegisteredException
https://doc.zeroc.com/display/Ice35/Ice-AlreadyRegisteredException

Ice 3.5.1 Documentation

5 Copyright © 2017, ZeroC, Inc.

1.
2.
3.

If the object uses the "sliced" format, Ice ascends the class hierarchy until it finds a type that is recognized by a factory, or it reaches the least-derived
type. If no factory is found that can create an instance, the run time throws .Ice::NoObjectFactoryException

If the object uses the "compact" format, Ice immediately raises .Ice::NoObjectFactoryException

The following order is used to locate a factory for a type:

The Ice run-time looks for a factory registered specifically for the type.
If no instance has been created, the Ice run-time looks for the default factory, which is registered with an empty type id.
If no instance has been created by any of the preceding steps, the Ice run-time looks for a factory that may have been statically generated
by the language mapping for non-abstract classes.

Parameters

factory — The factory to add.
 — The type id for which the factory can create instances, or an empty string for the default factory.id

See Also

findObjectFactory
Ice::ObjectFactory

Ice::ObjectFactory findObjectFactory(string id)

Find an object factory registered with this communicator.

Parameters

id — The type id for which the factory can create instances, or an empty string for the default factory.

Return Value

The object factory, or null if no object factory was found for the given id.

See Also

addObjectFactory
Ice::ObjectFactory

Ice::ImplicitContext getImplicitContext()

Get the implicit context associated with this communicator.

Return Value

The implicit context associated with this communicator; returns null when the property Ice.ImplicitContext is not set or is set to None.

Ice::Properties getProperties()

Get the properties for this communicator.

Return Value

This communicator's properties.

See Also

Ice::Properties

Ice::Logger getLogger()

Get the logger for this communicator.

Return Value

This communicator's logger.

See Also

Ice::Logger

https://doc.zeroc.com/display/Ice35/Ice-NoObjectFactoryException
https://doc.zeroc.com/display/Ice35/Ice-NoObjectFactoryException
https://doc.zeroc.com/display/Ice35/Ice-ObjectFactory
https://doc.zeroc.com/display/Ice35/Ice-ObjectFactory
https://doc.zeroc.com/display/Ice35/Ice-ObjectFactory
https://doc.zeroc.com/display/Ice35/Ice-ImplicitContext
https://doc.zeroc.com/display/Ice35/Ice-Properties
https://doc.zeroc.com/display/Ice35/Ice-Properties
https://doc.zeroc.com/display/Ice35/Ice-Logger
https://doc.zeroc.com/display/Ice35/Ice-Logger

Ice 3.5.1 Documentation

6 Copyright © 2017, ZeroC, Inc.

Ice::Stats getStats()

Get the statistics callback object for this communicator.

Return Value

This communicator's statistics callback object.

See Also

Ice::Stats

Ice::Instrumentation::CommunicatorObserver getObserver()

Get the observer resolver object for this communicator.

Return Value

This communicator's observer resolver object.

See Also

Ice::Stats

Ice::Router* getDefaultRouter()

Get the default router this communicator.

Return Value

The default router for this communicator.

See Also

setDefaultRouter
Ice::Router

void setDefaultRouter(* rtr)Ice::Router

Set a default router for this communicator. All newly created proxies will use this default router. To disable the default router, null can be used. Note
that this operation has no effect on existing proxies.

You can also set a router for an individual proxy by calling the operation on the proxyice_router .

Parameters

rtr — The default router to use for this communicator.

See Also

getDefaultRouter
createObjectAdapterWithRouter
Ice::Router

Ice::Locator* getDefaultLocator()

Get the default locator this communicator.

Return Value

The default locator for this communicator.

See Also

setDefaultLocator
Ice::Locator

void setDefaultLocator(* loc)Ice::Locator

Set a default Ice locator for this communicator. All newly created proxy and object adapters will use this default locator. To disable the default locator,
null can be used. Note that this operation has no effect on existing proxies or object adapters.

https://doc.zeroc.com/display/Ice35/Ice-Stats
https://doc.zeroc.com/display/Ice35/Ice-Stats
https://doc.zeroc.com/display/Ice35/Ice-Instrumentation-CommunicatorObserver
https://doc.zeroc.com/display/Ice35/Ice-Stats
https://doc.zeroc.com/display/Ice35/Ice-Router
https://doc.zeroc.com/display/Ice35/Ice-Router
https://doc.zeroc.com/display/Ice35/Ice-Router
https://doc.zeroc.com/display/Ice35/Ice-Router
https://doc.zeroc.com/display/Ice35/Ice-Locator
https://doc.zeroc.com/display/Ice35/Ice-Locator
https://doc.zeroc.com/display/Ice35/Ice-Locator

Ice 3.5.1 Documentation

7 Copyright © 2017, ZeroC, Inc.

You can also set a locator for an individual proxy by calling the operation on the proxy, or for an object adapter by calling the ice_locator
operation on the object adaptersetLocator .

Parameters

loc — The default locator to use for this communicator.

See Also

getDefaultLocator
Ice::Locator
Ice::ObjectAdapter::setLocator

Ice::PluginManager getPluginManager()

Get the plug-in manager for this communicator.

Return Value

This communicator's plug-in manager.

See Also

Ice::PluginManager

["async"] void flushBatchRequests()

Flush any pending batch requests for this communicator. This causes all batch requests that were sent via proxies obtained via this communicator to
be sent to the server.

Object* getAdmin()

Get a proxy to the main facet of the Admin object. When Ice.Admin.DelayCreation is greater than 0, it is necessary to call getAdmin() after the
communicator is initialized to create the Admin object. Otherwise, the Admin object is created automatically after all the plug-ins are initialized.

Return Value

The main ("") facet of the Admin object; a null proxy if no Admin object is configured.

void addAdminFacet(Object servant, string facet)

Add a new facet to the Admin object. Adding a servant with a facet that is already registered throws .Ice::AlreadyRegisteredException

Parameters

servant — The servant that implements the new Admin facet.
 — The name of the new Admin facet.facet

Object removeAdminFacet(string facet)

Remove the following facet to the Admin object. Removing a facet that was not previously registered throws .Ice::NotRegisteredException

Parameters

facet — The name of the Admin facet.

Return Value

The servant associated with this Admin facet.

Object findAdminFacet(string facet)

Returns a facet of the Admin object.

Parameters

facet — The name of the Admin facet.

Return Value

https://doc.zeroc.com/display/Ice35/Ice-Locator
https://doc.zeroc.com/display/Ice35/Ice-ObjectAdapter#IceObjectAdapter-setLocator
https://doc.zeroc.com/display/Ice35/Ice-PluginManager
https://doc.zeroc.com/display/Ice35/Ice-PluginManager
https://doc.zeroc.com/display/Ice35/Ice-AlreadyRegisteredException
https://doc.zeroc.com/display/Ice35/Ice-NotRegisteredException

Ice 3.5.1 Documentation

8 Copyright © 2017, ZeroC, Inc.

The servant associated with this Admin facet, or null if no facet is registered with the given name.

	Ice-Communicator

