
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

PHP Mapping for Interfaces
The mapping of Slice revolves around the idea that, to invoke a remote operation, you call a member function on a local class instance that interfaces
is a for the remote object. This makes the mapping easy and intuitive to use because making a remote procedure call is no different from proxy
making a local procedure call (apart from error semantics).

On this page:

Proxy Objects in PHP
Ice_ObjectPrx Class in PHP
Casting Proxies in PHP

Proxy Backward Compatibility in PHP
Using Proxy Methods in PHP
Object Identity and Proxy Comparison in PHP

Proxy Objects in PHP
Slice interfaces are implemented by instances of the class. In the client's address space, an instance of is the local Ice_ObjectPrx ObjectPrx
ambassador for a remote instance of an interface in a server and is known as a . All the details about the server-side object, such as proxy instance
its address, what protocol to use, and its object identity are encapsulated in that instance.

The PHP mapping for proxies differs from that of other Ice language mappings in that the class is used to implement Slice interfaces. ObjectPrx all
The primary motivation for this design is minimizing the amount of code that is generated for each interface. As a result, a proxy object returned by
the communicator operations and is , meaning it is not associated with a user-defined Slice interface. stringToProxy propertyToProxy untyped
Once you narrow the proxy to a particular interface, you can use that proxy to invoke your Slice operations.

Proxy instances are always created on behalf of the client by the Ice run time, so client code never has any need to instantiate a proxy directly.

A value of denotes the null proxy. The null proxy is a dedicated value that indicates that a proxy points "nowhere" (denotes no object).null

For each operation in the interface, the proxy object supports a method of the same name. Each operation accepts an optional trailing parameter
representing the operation context. This parameter is an associative string array for use by the Ice run time to store information about how to deliver
a request. You normally do not need to use it. (We examine the context parameter in detail in . The parameter is also used by Request Contexts IceSt

.)orm

Ice_ObjectPrx Class in PHP
In the PHP language mapping, all proxies are instances of . This class provides a number of methods:Ice_ObjectPrx

PHP

class Ice_ObjectPrx
{
 function ice_getIdentity();
 function ice_isA($id);
 function ice_ids();
 function ice_id();
 function ice_ping();
 # ...
}

The methods behave as follows:

ice_getIdentity
This method returns the identity of the object denoted by the proxy. The identity of an Ice object has the following Slice type:

https://doc.zeroc.com/display/Ice35/Interfaces%2C+Operations%2C+and+Exceptions
https://doc.zeroc.com/display/Ice35/Proxies
https://doc.zeroc.com/display/Ice35/Request+Contexts
https://doc.zeroc.com/display/Ice35/IceStorm
https://doc.zeroc.com/display/Ice35/IceStorm

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

Slice

module Ice {
 struct Identity {
 string name;
 string category;
 };
};

To see whether two proxies denote the same object, first obtain the identity for each object and then compare the identities:

PHP

$proxy1 = ...
$proxy2 = ...
$id1 = $proxy1->ice_getIdentity();
$id2 = $proxy2->ice_getIdentity();

if($id1 == $id2)
 // proxy1 and proxy2 denote the same object
else
 // proxy1 and proxy2 denote different objects

ice_isA
The method determines whether the object denoted by the proxy supports a specific interface. The argument to is a ice_isA ice_isA type

. For example, to see whether a proxy of type denotes a object, we can write:ID ObjectPrx Printer

PHP

$proxy = ...
if($proxy != null && $proxy->ice_isA("::Printer"))
 // proxy denotes a Printer object
else
 // proxy denotes some other type of object

Note that we are testing whether the proxy is before attempting to invoke the method. This avoids getting a run-time error if null ice_isA
the proxy is .null

ice_ids
The method returns an array of strings representing all of the that the object denoted by the proxy supports.ice_ids type IDs

ice_id
The method returns the of the object denoted by the proxy. Note that the type returned is the type of the actual object, ice_id type ID
which may be more derived than the static type of the proxy. For example, if we have a proxy of type , with a static type ID of BasePrx ::

, the return value of might be , or it might be something more derived, such as .Base ice_id "::Base" "::Derived"

ice_ping
The method provides a basic reachability test for the object. If the object can physically be contacted (that is, the object exists ice_ping
and its server is running and reachable), the call completes normally; otherwise, it throws an exception that indicates why the object could
not be reached, such as or .ObjectNotExistException ConnectTimeoutException

The class also defines an operator for comparing two proxies for equality. Note that all aspects of proxies are compared by this ObjectPrx
operation, such as the communication endpoints for the proxy. This means that, in general, if two proxies compare unequal, that does imply that not
they denote different objects. For example, if two proxies denote the same Ice object via different transport endpoints, returns even though == false
the proxies denote the same object.

The , , , and methods are remote operations and therefore support an additional overloading that accepts a ice_isA ice_ids ice_id ice_ping req
. Also note that there are in , not shown here. These methods provide different ways to dispatch a call and uest context other methods ObjectPrx

also provide access to an object's .facets

https://doc.zeroc.com/display/Ice35/Operations+on+Object#OperationsonObject-ice_isA
https://doc.zeroc.com/display/Ice35/Type+IDs
https://doc.zeroc.com/display/Ice35/Type+IDs
https://doc.zeroc.com/display/Ice35/Operations+on+Object#OperationsonObject-ice_ids
https://doc.zeroc.com/display/Ice35/Type+IDs
https://doc.zeroc.com/display/Ice35/Operations+on+Object#OperationsonObject-ice_id
https://doc.zeroc.com/display/Ice35/Type+IDs
https://doc.zeroc.com/display/Ice35/Operations+on+Object#OperationsonObject-ice_ping
https://doc.zeroc.com/display/Ice35/Request+Contexts
https://doc.zeroc.com/display/Ice35/Request+Contexts
https://doc.zeroc.com/display/Ice35/Proxy+Methods
https://doc.zeroc.com/display/Ice35/Facets+and+Versioning

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

Casting Proxies in PHP
The PHP mapping for a proxy generates a class with two static methods. For example, the following class is generated for the Slice interface named S

:imple

PHP

class SimplePrxHelper
{
 public static function
 checkedCast($proxy, $facetOrCtx=null, $ctx=null);

 public static function
 uncheckedCast($proxy, $facet=null);
}

The method names and are reserved for use in proxies. If a Slice interface defines an operation with either of those checkedCast uncheckedCast
names, the mapping escapes the name in the generated proxy by prepending an underscore. For example, an interface that defines an operation
named is mapped to a proxy with a method named .checkedCast _checkedCast

For , if the passed proxy is for an object of type , or a proxy for an object with a type derived from , the cast returns a checkedCast Simple Simple
proxy narrowed to that type; otherwise, if the passed proxy denotes an object of a different type (or if the passed proxy is), the cast returns .null null

The arguments are described below:

$proxy
The proxy to be narrowed.

$facetOrCtx
This optional argument can be either a string representing a desired , or an associative string array representing a .facet context

$ctx
If contains a facet name, use this argument to supply an associative string array representing a .$facetOrCtx context

$facet
Specifies the name of the desired .facet

Given a proxy of any type, you can use a to determine whether the corresponding object supports a given type, for example:checkedCast

PHP

$obj = ... // Get a proxy from somewhere...

$simple = SimplePrxHelper::checkedCast($obj);
if($simple != null)
 // Object supports the Simple interface...
else
 // Object is not of type Simple...

Note that a contacts the server. This is necessary because only the server implementation has definite knowledge of the type of an checkedCast
object. As a result, a may throw a or an .checkedCast ConnectTimeoutException ObjectNotExistException

In contrast, an does not contact the server and unconditionally returns a proxy of the requested type. However, if you do use an uncheckedCast un
, you must be certain that the proxy really does support the type you are casting to; otherwise, if you get it wrong, you will most likely checkedCast

get a run-time exception when you invoke an operation on the proxy. The most likely error for such a type mismatch is OperationNotExistExcept
. However, other exceptions, such as a marshaling exception are possible as well. And, if the object happens to have an operation with the ion

correct name, but different parameter types, no exception may be reported at all and you simply end up sending the invocation to an object of the
wrong type; that object may do rather nonsensical things. To illustrate this, consider the following two interfaces:

https://doc.zeroc.com/display/Ice35/Facets+and+Versioning
https://doc.zeroc.com/display/Ice35/Request+Contexts
https://doc.zeroc.com/display/Ice35/Request+Contexts
https://doc.zeroc.com/display/Ice35/Facets+and+Versioning

Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

Slice

interface Process {
 void launch(int stackSize, int dataSize);
};

// ...

interface Rocket {
 void launch(float xCoord, float yCoord);
};

Suppose you expect to receive a proxy for a object and use an to down-cast the proxy:Process uncheckedCast

PHP

$obj = ... // Get proxy...
$process = ProcessPrxHelper::uncheckedCast($obj); // No worries...
$process->launch(40, 60); // Oops...

If the proxy you received actually denotes a object, the error will go undetected by the Ice run time: because and have the same Rocket int float
size and because the Ice protocol does not tag data with its type on the wire, the implementation of will simply misinterpret the Rocket::launch
passed integers as floating-point numbers.

In fairness, this example is somewhat contrived. For such a mistake to go unnoticed at run time, both objects must have an operation with the same
name and, in addition, the run-time arguments passed to the operation must have a total marshaled size that matches the number of bytes that are
expected by the unmarshaling code on the server side. In practice, this is extremely rare and an incorrect typically results in a run-uncheckedCast
time exception.

Proxy Backward Compatibility in PHP

Prior releases of the PHP language mapping provided two proxy methods for narrowing a proxy:

PHP

class Ice_ObjectPrx
{
 function ice_checkedCast($type, $facetOrCtx=null, $ctx=null);
 function ice_uncheckedCast($type, $facet=null);
 # ...
}

For example, a proxy can be narrowed as follows:

PHP

$proxy = $proxy->ice_checkedCast("::Demo::Hello");

Embedding such type ID strings in your application is a potential source of defects because the strings are not validated until run time. Although
these methods are still supported for the sake of backward compatibility, we recommend using the static methods that are generated in the helper
class corresponding to each interface, as shown below:

PHP

$proxy = Demo_HelloPrxHelper::checkedCast($proxy);

Ice 3.5.1 Documentation

5 Copyright © 2017, ZeroC, Inc.

Not only are these static methods consistent with the APIs of other Ice language mappings, they also avoid the need to hard-code type ID strings in
your application.

Using Proxy Methods in PHP
The base proxy class supports a variety of . Since proxies are immutable, each of these "factory ObjectPrx methods for customizing a proxy
methods" returns a copy of the original proxy that contains the desired modification. For example, you can obtain a proxy configured with a ten
second timeout as shown below:

PHP

$proxy = $communicator->stringToProxy(...);
$proxy = $proxy->ice_timeout(10000);

A factory method returns a new proxy object if the requested modification differs from the current proxy, otherwise it returns the current proxy. With
few exceptions, factory methods return a proxy of the same type as the current proxy, therefore it is generally not necessary to repeat a down-cast
after using a factory method. The example below demonstrates these semantics:

PHP

$base = $communicator->stringToProxy(...);
$hello = Demo_HelloPrxHelper::checkedCast($base);
$hello = $hello->ice_timeout(10000); // Type is not discarded
$hello->sayHello();

The only exceptions are the factory methods and . Calls to either of these methods may produce a proxy for an object of ice_facet ice_identity
an unrelated type, therefore they return an untyped proxy that you must subsequently down-cast to an appropriate type.

Object Identity and Proxy Comparison in PHP
Proxy objects support comparison using the comparison operators and . Note that proxy comparison uses of the information in a proxy for == != all
the comparison. This means that not only the object identity must match for a comparison to succeed, but other details inside the proxy, such as the
protocol and endpoint information, must be the same. In other words, comparison tests for identity, object identity. A common mistake is to proxy not
write code along the following lines:

PHP

$p1 = ... // Get a proxy...
$p2 = ... // Get another proxy...

if($p1 != $p2)
 // p1 and p2 denote different objects // WRONG!
else
 // p1 and p2 denote the same object // Correct

Even though and differ, they may denote the same Ice object. This can happen because, for example, both and embed the same object p1 p2 p1 p2
identity, but each uses a different protocol to contact the target object. Similarly, the protocols may be the same, but denote different endpoints
(because a single Ice object can be contacted via several different transport endpoints). In other words, if two proxies compare equal, we know that
the two proxies denote the same object (because they are identical in all respects); however, if two proxies compare unequal, we know absolutely
nothing: the proxies may or may not denote the same object.

To compare the object identities of two proxies, you can use helper functions in the module:Ice

https://doc.zeroc.com/display/Ice35/Proxy+Methods

Ice 3.5.1 Documentation

6 Copyright © 2017, ZeroC, Inc.

PHP

function Ice_proxyIdentityCompare($lhs, $rhs);
function Ice_proxyIdentityAndFacetCompare($lhs, $rhs);

proxyIdentityCompare allows you to correctly compare proxies for identity:

PHP

$p1 = ... // Get a proxy...
$p2 = ... // Get another proxy...

if(Ice_proxyIdentityCompare($p1, $p2) != 0)
 // p1 and p2 denote different objects // Correct
else
 // p1 and p2 denote the same object // Correct

The function returns 0 if the identities are equal, if is less than , and 1 if is greater than . (The comparison uses as the major sort -1 p1 p2 p1 p2 name
key and as the minor sort key.)category

The function behaves similarly, but compares both the identity and the .proxyIdentityAndFacetCompare facet name

See Also

Interfaces, Operations, and Exceptions
Proxies
Type IDs
PHP Mapping for Operations
Request Contexts
Facets and Versioning
IceStorm

https://doc.zeroc.com/display/Ice35/Facets+and+Versioning
https://doc.zeroc.com/display/Ice35/Interfaces%2C+Operations%2C+and+Exceptions
https://doc.zeroc.com/display/Ice35/Proxies
https://doc.zeroc.com/display/Ice35/Type+IDs
https://doc.zeroc.com/display/Ice35/PHP+Mapping+for+Operations
https://doc.zeroc.com/display/Ice35/Request+Contexts
https://doc.zeroc.com/display/Ice35/Facets+and+Versioning
https://doc.zeroc.com/display/Ice35/IceStorm

	PHP Mapping for Interfaces

