Ice 3.5.1 Documentation

Objective-C Mapping for Classes

On this page:

Basic Objective-C Mapping for Classes
Derivation from ICEObject in Objective-C
Class Data Members in Objective-C
Class Constructors in Objective-C
Derived Classes in Objective-C
Passing Classes as Parameters in Objective-C
Operations of Classes in Objective-C
Class Factories in Objective-C

© Using a Category to Implement Operations in Objective-C
® Copying of Classes in Objective-C
O Cyclic References in Objective-C

Basic Objective-C Mapping for Classes

A Slice class is mapped similar to a structure and exception.

The generated class contains an instance variable and a property for each Slice data member. Consider the following class definition:

Slice

class Ti meOf Day {

short hour; /1 0 - 23
short nminute; // 0 - 59
short second; // 0 - 59
string format(); /1 Return time as hh:nmss

1

The Slice compiler generates the following code for this definition:

Objective-C

@nterface EXTi ne(f Day : | CEQbj ect

{
| CEShort hour;
| CEShort m nute;
| CEShort second;
}

@r operty(nonatom c, assign) |CEShort hour;
@r operty(nonatomnic, assign) |CEShort minute;
@r operty(nonatomni c, assign) |CEShort second;

-(id) init:(lICEShort)hour minute: (I CEShort)ni nute second: (I CEShort)second;
+(id) tinmed Day;

+(id) tinmedDay: (I CEShort)hour minute: (I CEShort)m nute second: (| CEShort)second;
@nd

There are a number of things to note about the generated code:

1. The generated class EXTi meOf Day derives from | CEQbj ect , which is the parent of all classes. Note that | CECbj ect is not the same as |
CEj ect Prx. In other words, you cannot pass a class where a proxy is expected and vice versa.

2. The generated class contains a property for each Slice data member.

3. The generated class provides an i ni t method that accepts one argument for each data member, and it provides the same two
convenience constructors as structures and exceptions.

Derivation from | CEQbj ect in Objective-C

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Classes

Ice 3.5.1 Documentation

All classes ultimately derive from a common base class, | CEObj ect . Note that this is not the same as implementing the | CECbj ect Pr x protocol
(which is implemented by proxies). As a result, you cannot pass a class where a proxy is expected (and vice versa) because the base types for
classes and proxies are not compatible.

| CEQhj ect defines a number of methods:

Objective-C

@r ot ocol | CEObj ect <NSObj ect >

-(BOOL) ice_isA (NsSString*)typeld current: (ICECurrent*)current;
-(void) ice_ping:(lICECurrent*)current;

-(NSString*) ice_id:(lICECurrent*)current;

-(NSArray*) ice_ids: (I CECurrent*)current;

@nd

@nterface | CEQbj ect NSObj ect <I CEChj ect, NSCopyi ng>
-(BOOL) ice_isA (NSString*)typeld;
-(void) ice_ping;
-(NSString*) ice_id,;
-(NSArray*) ice_ids;
+(NSString*) ice_staticld;
voi d) ice_preMarshal;
voi d) ice_postUnnarshal ;
BOOL) i ce_di spatch: (i d<| CERequest >) r equest;

-(
-(
-(
-(id)
+(

initWthDel egat e: (id)del egate;

id) objectWthDel egate: (id)del egate;

@nd

@ The methods are split between the | CEObj ect protocol and class because classes can be servants.

The methods of | CEObj ect behave as follows:

® jce_isA

This function returns YES if the object supports the given type ID, and NO otherwise.

i ce_ping

i ce_pi ng provides a basic reachability test for the class. If it completes without raising an exception, the class exists and is reachable.
Note that i ce_pi ng is normally only invoked on the proxy for a class that might be remote because a class instance that is local (in the
caller's address space) can always be reached.

ice_ids
This function returns a string sequence representing all of the type IDs supported by this object, including : : | ce: : Cbj ect .

ice_id
This function returns the actual run-time type ID for a class. If you call i ce_i d via a pointer to a base instance, the returned type ID is the
actual (possibly more derived) type ID of the instance.

ice_staticld
This function returns the static type ID of a class.

i ce_preMarshal
The Ice run time invokes this function prior to marshaling the object's state, providing the opportunity for a subclass to validate its declared
data members.

i ce_post Unmar shal
The Ice run time invokes this function after unmarshaling an object's state. A subclass typically overrides this function when it needs to
perform additional initialization using the values of its declared data members.

i ce_di spatch
This function dispatches an incoming request to a servant. It is used in the implementation of dispatch interceptors.

initWthbDel egate
These constructors enable the implementation of servants with a delegate.

Class Data Members in Objective-C

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Type+IDs
https://doc.zeroc.com/display/Ice35/Type+IDs
https://doc.zeroc.com/display/Ice35/Type+IDs
https://doc.zeroc.com/display/Ice35/Type+IDs
https://doc.zeroc.com/display/Ice35/Dispatch+Interceptors
https://doc.zeroc.com/display/Ice35/Server-Side+Objective-C+Mapping+for+Interfaces#ServerSideObjectiveCMappingforInterfaces-delegate

Ice 3.5.1 Documentation

By default, data members of classes are mapped exactly as for structures and exceptions: for each data member in the Slice definition, the
generated class contains a corresponding property.

Class Constructors in Objective-C

Classes provide the usual i ni t method and a parameter-less convenience constructor that perform default initialization of the class's instance
variables. If you declare default values in your Slice definition, the i ni t method and convenience constructor initialize each data member with its
declared value.

In addition, if a class has data members, it provides an i ni t method and a convenience constructor that accept one argument for each data
member. This allows you to allocate and initialize a class instance in a single statement (instead of first having to allocate and default-initialize the
instance and then assign to its properties).

For derived classes, the i ni t method and the convenience constructor have one parameter for each of the base class's data members, plus one

parameter for each of the derived class's data members, in base-to-derived order. For example:

Slice

cl ass Base {
int i;

b

class Derived extends Base {
string s;

1

This generates:

Objective-C

@nterface EXBase : | CEOj ect
/1

@roperty(nonatonmic, assign) ICEInt i;
-(id) init:(ICEINt)i;

+(id) base;

+(id) base:(ICEINnt)i;

@nd

@nterface EXDerived : EXBase
11

@r operty(nonatomic, retain) NSString *s;
-(id) init:(ICEINnt)i s:(NSString *)s;
+(id) derived;

+(id) derived: (ICEInt)i s:(NSString *)s;
@nd

Derived Classes in Objective-C

Note that, in the preceding example, the derivation of the Slice definitions is preserved for the generated classes: EXBase derives from | CEQbj ect ,
and EXDer i ved derives from EXBase. This allows you to treat and pass classes polymorphically: you can always pass an EXDer i ved instance
where an EXBase instance is expected.

Passing Classes as Parameters in Objective-C

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Simple+Classes

Ice 3.5.1 Documentation

Classes are passed by pointer, like any other Objective-C object. For example, here is an operation that accepts a Base as an in-parameter and
returns a Der i ved:

Slice

Derived getDerived(Base d);

The corresponding proxy method looks as follows:

Objective-C

- (EXDerived *) getDerived: (EXBase *)d;

To pass a null instance, you simply pass ni | .

Operations of Classes in Objective-C

If you look back at the code that is generated for the EXTi meCf Day class, you will notice that there is no indication at all that the class has a f or nat
operation. As opposed to proxies, classes do not implement any protocol that would define which operations are available. This means that you can
partially implement the operations of a class. For example, you might have a Slice class with five operations that is returned from a server to a client.
If the client uses only one of the five operations, the client-side code needs to implement only that one operation and can leave the remaining four
operations without implementation. (If the class were to implement a mandatory protocol, the client-side code would have to implement all operations
in order to avoid a compiler warning.)

Of course, you must implement those operations that you actually intend to call. The mapping of operations for classes follows the server-side
mapping for operations on interfaces: parameter types and labels are exactly the same. (See Parameter Passing in Objective-C for details.) In a
nutshell, the server-side mapping is the same as the client-side mapping except that, for types that have mutable and immutable variants, they map
to the immutable variant where the client-side mapping uses the mutable variant, and vice versa.

For example, here is how we could implement the f or mat operation of our Ti meCf Day class:

Objective-C

@nterface Ti meOf Dayl : EXTi meCf Day
@nd

@ npl enent ati on Ti meCf Dayl
-(NSstring *) format
{

}
@nd

return [NSString stringWthFormat: @% 2d: % 2d: % 2d", sel f. hour, self.mnute, self.second];

By convention, the implementation of classes with operations has the same name as the Slice class with an | -suffix. Doing this is not mandatory —
you can call your implementation class anything you like. However, if you do not want to use the | -suffix naming, we recommend that you adopt
another naming convention and follow it consistently.

Note that Ti neOf Day| derives from EXTi meCf Day. This is because, as we will see in a moment, the Ice run time will instantiate a Ti meCf Day|
instance whenever it receives a Ti meOf Day instance over the wire and expects that instance to provide the properties of EXTi meCf Day.

Class Factories in Objective-C

Having created a class such as Ti neCf Day| , we have an implementation and we can instantiate the Ti neCf Day| class, but we cannot receive it as
the return value or as an out-parameter from an operation invocation. To see why, consider the following simple interface:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Parameter+Passing+in+Objective-C

Ice 3.5.1 Documentation

Slice

interface Tinme {
Ti meCf Day get ();
I

When a client invokes the get operation, the Ice run time must instantiate and return an instance of the Ti neCf Day| class. However, unless we tell
it, the Ice run time cannot magically know that we have created a Ti meCf Day| class that implements a f or mat method. To allow the Ice run time to
instantiate the correct object, we must provide a factory that knows that the Slice Ti neCf Day class is implemented by our Ti meOf Day| class. The |
ce: : Communi cat or interface provides us with the necessary operations:

Slice

["objc:prefix:ICE"]
nodul e Ice {
local interface bjectFactory {
bj ect create(string type);
voi d destroy();
b

local interface Communicator {
voi d addoj ect Fact ory(Qbj ect Factory factory, string id);
bj ect Factory findObjectFactory(string id);
/1
b
b

To supply the Ice run time with a factory for our Ti meCf Day| class, we must implement the Obj ect Fact or y interface:

Slice

nmodul e Ice {
local interface CbjectFactory {
bj ect create(string type);
voi d destroy();
i
b

The object factory's cr eat e operation is called by the Ice run time when it needs to instantiate a Ti meOf Day class. The factory's dest r oy operation
is called by the Ice run time when its communicator is destroyed. A possible implementation of our object factory is:

Objective-C

@nterface ObjectFact ory<l CEQoj ect Fact ory>
@nd

@ npl enent ati on oj ect Factory
- (1 CEQbj ect*) create: (NSString *)type

{
NSAssert ([type isEqual ToString: @:: Exanpl e:: Ti meOf Day"]);
return [[TineODayl alloc] init];

}

@nd

The cr eat e method is passed the type ID of the class to instantiate. For our Ti meCf Day class, the type ID is " : : Exanpl e: : Ti meCf Day" . Our
implementation of cr eat e checks the type ID: if itis " : : Exanpl e: : Ti meCOf Day", it instantiates and returns a Ti meCf Day| object. For other type
IDs, it asserts because it does not know how to instantiate other types of objects.

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Type+IDs

Ice 3.5.1 Documentation

Note that your factory must not autorelease the returned instance. The Ice run time takes care of the necessary memory management activities on
your behalf.

Given a factory implementation, such as our Obj ect Fact or y, we must inform the Ice run time of the existence of the factory:

Objective-C

i d<| CECommuni cator> ice = ...;
bj ect Factory *factory = [[[ObjectFactory alloc] init] autorel ease];
[ic addObj ect Factory: factory sliceld: @:: Exanpl e:: Ti meCf Day"] ;

Now, whenever the Ice run time needs to instantiate a class with the type ID " : : Exanpl e: : Ti meOf Day", it calls the cr eat e method of the
registered Obj ect Fact or y instance.

The dest r oy operation of the object factory is invoked by the Ice run time when the communicator is destroyed. This gives you a chance to clean up
any resources that may be used by your factory. Do not call dest r oy on the factory while it is registered with the communicator — if you do, the Ice
run time has no idea that this has happened and, depending on what your dest r oy implementation is doing, may cause undefined behavior when
the Ice run time tries to next use the factory.

The run time guarantees that dest r oy will be the last call made on the factory, that is, cr eat e will not be called concurrently with dest r oy, and cr e
at e will not be called once dest r oy has been called. However, the Ice run time may make concurrent calls to cr eat e.

Note that you cannot register a factory for the same type ID twice: if you call addObj ect Fact or y with a type ID for which a factory is registered, the
Ice run time throws an Al r eadyRegi st er edExcepti on.

Finally, keep in mind that if a class has only data members, but no operations, you need not (but can) create and register an object factory to transmit
instances of such a class. Only if a class has operations do you have to define and register an object factory.
Using a Category to Implement Operations in Objective-C

An alternative to registering a class factory is to use an Objective-C category to implement operations. For example, we could have implemented our
f or mat method using a category instead:

Objective-C

@nterface EXTi meOf Day (Ti meOf Dayl)
@nd

@ npl enent ati on EXTi neCf Day (Ti neCf Dayl)
-(NSString *) format
{

}
@nd

return [NSString stringWthFormat: @% 2d: % 2d: % 2d", sel f.hour, self.mnute, self.second];

In this case, there is no need to derive from the generated EXTi neCf Day class because we provide the format implementation as a category. There
is also no need to register a class factory: the Ice run time instantiates an EXTi meCf Day instance when a Ti meCOf Day instance arrives over the wire,
and the f or mat method is found at run time when it is actually called.

This is a viable alternative approach to implement class operations. However, keep in mind that, if the operation implementation requires use of

instance variables that are not defined as part of the Slice definitions of a class, you cannot use this approach because Objective-C categories do not
permit you to add instance variables to a class.

Copying of Classes in Objective-C

Classes implement NSCopyi ng. The behavior is the same as for structures: instance variables of value type are copied by assignment, instance
variables of pointer type are copied by calling r et ai n, that is, the copy is shallow. To illustrate this, consider the following class definition:

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

Slice

cl ass Node {

int i;
string s;
Node next;

1

We can initialize two instances of type EXNode as follows:
Objective-C

NSString lastString = [NSString stringWthString: @l ast"];
EXNode *l ast = [EXNode node: 99 s:lastString next:nil];

NSString firstString = [NSString stringWthString: @first"];
EXNode *first = [EXNode node:1 s:firstString next:last];

This creates the situation shown below:

EXMode
— MNSString
/ il Y f_J-F—— _ ——
first S ' » first)
l'-x next; | -
\‘m_ L
.a-"'l"\\
/ BE ——
last o | . f last)
'-,‘\ next: /,J' —
S— NSString
EXMode

Two instances of type EXNode.

Now we create a copy of the first node by calling copy:
Objective-C

EXNode *copy = [[first copy] autorel ease];

This creates the situation shown here:

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

EXNode
/”’_"‘H\ M55tring
il —
first > =) }fﬁfrﬁmt_::%
next: R
\ | \
\
\
7 \
\
T
B —
last » s | ;-.-.l/fr |35‘t)
\ next: / N
_ __/P\ W5String
EXNode \
copy —_

EXNode
EXNode instances after calling copy onfi rst.

As you can see, the first node is copied, but the last node (pointed at by the next instance variable of the first node) is not copied; instead, fi r st
and copy now both have their next instance variable point at the same last node, and both point at the same string.

Cyclic References in Objective-C

One thing to be aware of are cyclic references among classes. As an example, we can easily create a cycle by executing the following statements:

Objective-C
EXNode *first = [EXNode node];
ExNode *last = [EXNode node];

first.next = last;
last.next = first;

This makes the next instance variable of the two classes point at each other, creating the cycle shown below:

EXNode

first

last

EXNode

Two nodes with cyclic references.

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

There is no problem with sending this class graph as a parameter. For example, you could pass either fi r st or| ast as a parameter to an
operation and, in the server, the Ice run time will faithfully rebuild the corresponding graph, preserving the cycle. However, if a server returns such a
graph from an operation invocation as the return value or as an out-parameter, all class instances that are part of a cycle are leaked. The same is
true on the client side: if you receive such a graph from an operation invocation and do not explicitly break the cycle, you will leak all instances that
form part of the cycle.

Because it is difficult to break cycles manually (and, on the server side, for return values and out-parameters, it is impossible to break them), we
recommend that you avoid cyclic references among classes.

@ A future version of the Objective-C run time may provide a garbage collector similar to the one used by Ice for C++.

See Also

Simple Classes

Objective-C Mapping for Classes]

Server-Side Objective-C Mapping for Interfaces
Parameter Passing in Objective-C

Dispatch Interceptors

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Simple+Classes
https://doc.zeroc.com/display/Ice35/Server-Side+Objective-C+Mapping+for+Interfaces
https://doc.zeroc.com/display/Ice35/Parameter+Passing+in+Objective-C
https://doc.zeroc.com/display/Ice35/Dispatch+Interceptors

	Objective-C Mapping for Classes

