Ice 3.5.1 Documentation

C-Sharp Mapping for Exceptions

On this page:

® |nheritance Hierarchy for Exceptions in C#

® C# Mapping for User Exceptions

® C# Default Constructors for User Exceptions
® C# Mapping for Run-Time Exceptions

Inheritance Hierarchy for Exceptions in C#

The mapping for exceptions is based on the inheritance hierarchy shown below:

System.Exception

lce. Exceplion

lce.LocalException lce. UserException

Specific Run-Time Exceplions... Specific User Exceptions...

Inheritance structure for exceptions.

The ancestor of all exceptions is Syst em Except i on. Derived from thatis | ce. Except i on, which provides the definitions of a number of
constructors. | ce. Local Excepti on and | ce. User Except i on are derived from | ce. Except i on and form the base of all run-time and user

exceptions, respectively.

The constructors defined in | ce. Except i on have the following signatures:
C#
public abstract class Exception : System Exception
{

public Exception();
public Exception(System Exception ex);

Each concrete derived exception class implements these constructors. The second constructor initializes the | nner Except i on property of Syst em
Except i on. (Both constructors set the Message property to the empty string.)

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

C# Mapping for User Exceptions

Here is a fragment of the Slice definition for our world time server once more:

Slice
exception GenericError {
string reason;

exception BadTi meVal extends GenericError {};

exception BadZoneNane extends GenericError {};

These exception definitions map as follows:

Ct#
public partial class GenericError : |ce.UserException
{
public string reason;
public GenericError();
public GenericError(System Exception ex__);
public GenericError(string reason);
public CenericError(string reason, System Exception ex__);
/| GetHashCode and conparison nethods defined here,
/1 as well as mapping-internal nethods.
}
public partial class BadTineval : M GenericError
{
public BadTi neVal ();
publ i c BadTi neVal (Syst em Exception ex__);
publ i c BadTi neVal (string reason);
public BadTi neVal (string reason, System Exception ex__);
/| GetHashCode and conparison methods defined here,
/1 as well as mapping-internal nethods.
}
public partial class BadZoneName : M GenericError
{
publ i ¢ BadZoneName();
publ i c BadZoneNane(System Exception ex__);
publ i c BadZoneNane(string reason);
publ i c BadZoneNane(string reason, System Exception ex__);
/| GetHashCode and conparison methods defined here,
/1 as well as mapping-internal nethods.
}

Each Slice exception is mapped to a C# partial class with the same name. For each exception member, the corresponding class contains a public
data member. (Obviously, because BadTi neVal and BadZoneNane do not have members, the generated classes for these exceptions also do not
have members.) Optional data members are mapped to instances of the | ce. Opt i onal type.

The inheritance structure of the Slice exceptions is preserved for the generated classes, so BadTi neVal and BadZoneNane inherit from Generi cEr
ror.

All user exceptions are derived from the base class | ce. User Except i on. This allows you to catch all user exceptions generically by installing a

handler for | ce. User Except i on. Similarly, you can catch all Ice run-time exceptions with a handler for | ce. Local Except i on, and you can catch
all Ice exceptions with a handler for | ce. Excepti on.

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Proxies
https://doc.zeroc.com/display/Ice35/Optional+Data+Members
https://doc.zeroc.com/display/Ice35/C-Sharp+Mapping+for+Optional+Values

Ice 3.5.1 Documentation

All exceptions provide the usual Get HashCode and Equal s methods, as well as the == and ! = comparison operators.

The generated exception classes also contain other member functions that are not shown here; these member functions are internal to the C#
mapping and are not meant to be called by application code.

C# Default Constructors for User Exceptions

Exceptions have a default constructor that default-constructs each data member. This means members of primitive type are initialized to the
equivalent of zero, and members of reference type are initialized to null. Note that applications must always explicitly initialize a member whose type
is a class-mapped structure because the Ice run time does not accept null as a legal value for these types.

If you wish to ensure that data members of primitive and enumerated types are initialized to specific values, you can declare default values in your Slic
e definition. The default constructor initializes each of these data members to its declared value.

An exception also provides a constructor that accepts one parameter for each data member so that you can construct and initialize a class instance
in a single statement (instead of first having to construct the instance and then assign to its members). For a derived exception, this constructor
accepts one argument for each base exception member, plus one argument for each derived exception member, in base-to-derived order. For each
optional data member, the constructor accepts an | ce. Opt i onal parameter of the appropriate type.

C# Mapping for Run-Time Exceptions

The Ice run time throws run-time exceptions for a number of pre-defined error conditions. All run-time exceptions directly or indirectly derive from | ce
. Local Except i on (which, in turn, derives from | ce. Except i on).

I ce. Local Excepti on implements a Cl one method that is inherited by its derived exceptions, so you can make memberwise shallow copies of
exceptions.

By catching exceptions at the appropriate point in the inheritance hierarchy, you can handle exceptions according to the category of error they
indicate:

® |ce. Exception
This is the root of the inheritance tree for both run-time and user exceptions.

® |ce. Local Exception
This is the root of the inheritance tree for run-time exceptions.

® | ce. User Exception
This is the root of the inheritance tree for user exceptions.

® | ce. Ti neout Exception
This is the base exception for both operation-invocation and connection-establishment timeouts.

® | ce. Connect Ti meout Excepti on
This exception is raised when the initial attempt to establish a connection to a server times out.

For example, a Connect Ti meout Except i on can be handled as Connect Ti meout Except i on, Ti meout Excepti on, Local Excepti on, or Exc
eption.

You will probably have little need to catch run-time exceptions as their most-derived type and instead catch them as Local Except i on; the fine-
grained error handling offered by the remainder of the hierarchy is of interest mainly in the implementation of the Ice run time. Exceptions to this rule
are the exceptions related to facet and object life cycles, which you may want to catch explicitly. These exceptions are Facet Not Exi st Excepti on
and Obj ect Not Exi st Except i on, respectively.

See Also

User Exceptions

Run-Time Exceptions

C-Sharp Mapping for Identifiers
C-Sharp Mapping for Modules
C-Sharp Mapping for Built-In Types
C-Sharp Mapping for Enumerations
C-Sharp Mapping for Structures
C-Sharp Mapping for Sequences
C-Sharp Mapping for Dictionaries
C-Sharp Collection Comparison
C-Sharp Mapping for Constants
C-Sharp Mapping for Optional Values
Facets and Versioning

Object Life Cycle

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/C-Sharp+Mapping+for+Structures#CSharpMappingforStructures-Class
https://doc.zeroc.com/display/Ice35/User+Exceptions
https://doc.zeroc.com/display/Ice35/User+Exceptions
https://doc.zeroc.com/display/Ice35/C-Sharp+Mapping+for+Optional+Values
https://doc.zeroc.com/display/Ice35/Facets+and+Versioning
https://doc.zeroc.com/display/Ice35/Object+Life+Cycle
https://doc.zeroc.com/display/Ice35/User+Exceptions
https://doc.zeroc.com/display/Ice35/Run-Time+Exceptions
https://doc.zeroc.com/display/Ice35/C-Sharp+Mapping+for+Identifiers
https://doc.zeroc.com/display/Ice35/C-Sharp+Mapping+for+Modules
https://doc.zeroc.com/display/Ice35/C-Sharp+Mapping+for+Built-In+Types
https://doc.zeroc.com/display/Ice35/C-Sharp+Mapping+for+Enumerations
https://doc.zeroc.com/display/Ice35/C-Sharp+Mapping+for+Structures
https://doc.zeroc.com/display/Ice35/C-Sharp+Mapping+for+Sequences
https://doc.zeroc.com/display/Ice35/C-Sharp+Mapping+for+Dictionaries
https://doc.zeroc.com/display/Ice35/C-Sharp+Collection+Comparison
https://doc.zeroc.com/display/Ice35/C-Sharp+Mapping+for+Constants
https://doc.zeroc.com/display/Ice35/C-Sharp+Mapping+for+Optional+Values
https://doc.zeroc.com/display/Ice35/Facets+and+Versioning
https://doc.zeroc.com/display/Ice35/Object+Life+Cycle

Ice 3.5.1 Documentation

Copyright © 2017, ZeroC, Inc.

	C-Sharp Mapping for Exceptions

