
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Modules
On this page:

Modules Reduce Clutter
Modules are Mandatory
Reopening Modules
Module Mapping
The Ice Module

Modules Reduce Clutter
A common problem in large systems is pollution of the global namespace: over time, as isolated systems are integrated, name clashes become quite
likely. Slice provides the construct to alleviate this problem:module

Slice

module ZeroC {
 module Client {
 // Definitions here...
 };
 module Server {
 // Definitions here...
 };
};

A module can contain any legal Slice construct, including other module definitions. Using modules to group related definitions together avoids
polluting the global namespace and makes accidental name clashes quite unlikely. (You can use a well-known name, such as a company or product
name, as the name of the outermost module.)

Modules are Mandatory
Slice requires all definitions to be nested inside a module, that is, you cannot define anything other than a module at global scope. For example, the
following is illegal:

Slice

interface I { // Error: only modules can appear at global scope
 // ...
};

Definitions at global scope are prohibited because they cause problems with some implementation languages (such as Python, which does not have
a true global scope).

Reopening Modules
Modules can be reopened:

Throughout the Ice manual, you will occasionally see Slice definitions that are not nested inside a module. This is to keep the examples
short and free of clutter. Whenever you see such a definition, assume that it is nested in a module.

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

Slice

module ZeroC {
 // Definitions here...
};

// Possibly in a different source file:

module ZeroC { // OK, reopened module
 // More definitions here...
};

Reopened modules are useful for larger projects: they allow you to split the contents of a module over several different . The advantage of source files
doing this is that, when a developer makes a change to one part of the module, only files dependent on the changed part need be recompiled
(instead of having to recompile all files that use the module).

Module Mapping
Modules map to a corresponding scoping construct in each programming language. (For example, for C++ and C#, Slice modules map to
namespaces whereas, for Java, they map to packages.) This allows you to use an appropriate C++ or Java declaration to avoid using import
excessively long identifiers in your source code.

The Ice Module
APIs for the Ice run time, apart from a small number of language-specific calls that cannot be expressed in Ice, are defined in the module. In Ice
other words, most of the Ice API is actually expressed as Slice definitions. The advantage of doing this is that a single Slice definition is sufficient to
define the API for the Ice run time for all supported languages. The respective language mapping rules then determine the exact shape of each Ice
API for each implementation language.

We will incrementally explore the contents of the module throughout this manual.Ice

See Also

Slice Source Files

https://doc.zeroc.com/display/Ice35/Slice+Source+Files
https://doc.zeroc.com/display/Ice35/Slice+Source+Files

	Modules

