Ice 3.4.2 Documentation

Customizing the Java Mapping

You can customize the code that the Slice-to-Java compiler produces by annotating your Slice definitions with metadata. This section describes how
metadata influences several aspects of the generated Java code.

On this page:

® Java Packages
© Java Package Configuration Properties
® Custom Types in Java
© Metadata in Java
© Defining a Custom Sequence Type in Java
© Defining a Custom Dictionary Type in Java
© Using Custom Type Metadata in Java
© Mapping for Modified Out Parameters in Java
® JavaBean Mapping
o JavaBean Generated Methods
© JavaBean Metadata

Java Packages

By default, the scope of a Slice definition determines the package of its mapped Java construct. A Slice type defined in a module hierarchy is mapped
to a type residing in the equivalent Java package.

There are times when applications require greater control over the packaging of generated Java classes. For instance, a company may have
software development guidelines that require all Java classes to reside in a designated package. One way to satisfy this requirement is to modify the
Slice module hierarchy so that the generated code uses the required package by default. In the example below, we have enclosed the original
definition of Wor kf | ow. : Docunent in the modules com : acne so that the compiler will create the class in the com acne package:

Slice

nmodul e com {
nodul e acme {
nmodul e Wor kfl ow {
cl ass Docunent {
/1

There are two problems with this workaround:

1. Itincorporates the requirements of an implementation language into the application's interface specification.
2. Developers using other languages, such as C++, are also affected.

The Slice-to-Java compiler provides a better way to control the packages of generated code through the use of global metadata. The example above
can be converted as follows:

Slice

[["]ava: package: com acne"]]
nodul e Wor kf | ow {
cl ass Docunent {
/1
b
b

The global metadata directive j ava: package: com acne instructs the compiler to generate all of the classes resulting from definitions in this Slice
file into the Java package com acne. The net effect is the same: the class for Docunent is generated in the package com acne. Wor kf | ow.
However, we have addressed the two shortcomings of the first solution by reducing our impact on the interface specification: the Slice-to-Java
compiler recognizes the package metadata directive and modifies its actions accordingly, whereas the compilers for other language mappings simply
ignore it.

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/Metadata
https://doc.zeroc.com/display/Ice34/Java+Mapping+for+Modules
https://doc.zeroc.com/display/Ice34/Metadata

Ice 3.4.2 Documentation

Java Package Configuration Properties

Using global metadata to alter the default package of generated classes has ramifications for the Ice run time when unmarshaling exceptions and con
crete class types. The Ice run time dynamically loads generated classes by translating their Slice type ids into Java class names. For example, the
Ice run time translates the Slice type id : : Wor kf | ow. : Docunent into the class name Wor kf | ow. Docunent .
However, when the generated classes are placed in a user-specified package, the Ice run time can no longer rely on the direct translation of a Slice
type id into a Java class name, and therefore requires additional configuration so that it can successfully locate the generated classes. Two
configuration properties are supported:

® | ce. Package. Mbdul e=package

Associates a top-level Slice module with the package in which it was generated.

@ Only top-level module names are allowed; the semantics of global metadata prevent a nested module from being generated into
a different package than its enclosing module.

® | ce. Defaul t. Package=package

Specifies a default package to use if other attempts to load a class have failed.
The behavior of the Ice run time when unmarshaling an exception or concrete class is described below:

1. Translate the Slice type id into a Java class name and attempt to load the class.

2. If that fails, extract the top-level module from the type id and check for an | ce. Package property with a matching module name. If found,
prepend the specified package to the class name and try to load the class again.

3. If that fails, check for the presence of | ce. Def aul t . Package. If found, prepend the specified package to the class name and try to load
the class again.

4. If the class still cannot be loaded, the instance may be sliced.

Continuing our example from the previous section, we can define the following property:

I ce. Package. Wor kf | ow=com acne

Alternatively, we could achieve the same result with this property:

I ce. Def aul t. Package=com acne

Custom Types in Java

One of the more powerful applications of metadata is the ability to tailor the Java mapping for sequence and dictionary types to match the needs of
your application.

Metadata in Java

The metadata for specifying a custom type has the following format:

java:type:instance-type[:formal-type]

The formal type is optional; the compiler uses a default value if one is not defined. The instance type must satisfy an is-A relationship with the formal
type: either the same class is specified for both types, or the instance type must be derived from the formal type.

The Slice-to-Java compiler generates code that uses the formal type for all occurrences of the modified Slice definition except when the generated
code must instantiate the type, in which case the compiler uses the instance type instead.

The compiler performs no validation on your custom types. Misspellings and other errors will not be apparent until you compile the generated code.

Defining a Custom Sequence Type in Java

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/User+Exceptions
https://doc.zeroc.com/display/Ice34/Simple+Classes
https://doc.zeroc.com/display/Ice34/Simple+Classes
https://doc.zeroc.com/display/Ice34/Class+Inheritance+Semantics

Ice 3.4.2 Documentation

Although the default mapping of a sequence type to a native Java array is efficient and typesafe, it is not always the most convenient representation
of your data. To use a different representation, specify the type information in a metadata directive, as shown in the following example:

Slice

["java:type:java. util.LinkedList<String>"]
sequence<string> StringList;

It is your responsibility to use a type parameter for the Java class (St r i ng in the example above) that is the correct mapping for the sequence's
element type.

The compiler requires the formal type to implement j ava. uti | . Li st <E>, where E is the Java mapping of the element type. If you do not specify a
formal type, the compiler uses j ava. uti | . Li st <E> by default.

Note that extra care must be taken when defining custom types that contain nested generic types, such as a custom sequence whose element type is
also a custom sequence. The Java compiler strictly enforces type safety, therefore any compatibility issues in the custom type metadata will be
apparent when the generated code is compiled.

Defining a Custom Dictionary Type in Java

The default instance type for a dictionary is j ava. uti | . HashMap<K, V>, where K is the Java mapping of the key type and V is the Java mapping
of the value type. If the semantics of a HashMap are not suitable for your application, you can specify an alternate type using metadata as shown in
the example below:

Slice

["java:type:java.util.TreeMap<String, String>"]
di ctionary<string, string> StringMap;

It is your responsibility to use type parameters for the Java class (St ri ng in the example above) that are the correct mappings for the dictionary's
key and value types.

The compiler requires the formal type to implement j ava. uti | . Map<K, V>.If you do not specify a formal type, the compiler uses this type by
default.

Note that extra care must be taken when defining dictionary types that contain nested generic types, such as a dictionary whose element type is a

custom sequence. The Java compiler strictly enforces type safety, therefore any compatibility issues in the custom type metadata will be apparent
when the generated code is compiled.

Using Custom Type Metadata in Java

You can define custom type metadata in a variety of situations. The simplest scenario is specifying the metadata at the point of definition:

Slice

["java:type:java.util.LinkedList<String>"]
sequence<string> StringList;

Defined in this manner, the Slice-to-Java compiler uses j ava. uti | . Li st <St ri ng> (the default formal type) for all occurrences of St ri ngLi st,
andj ava. util . Li nkedLi st <St ri ng>when it needs to instantiate St ri ngLi st .

You may also specify a custom type more selectively by defining metadata for a data member, parameter or return value. For instance, the mapping

for the original Slice definition might be sufficient in most situations, but a different mapping is more convenient in particular cases. The example
below demonstrates how to override the sequence mapping for the data member of a structure as well as for several operations:

Copyright © 2017, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice

sequence<string> StringSeq;
struct S {
["java:type:java.util.LinkedList<String>"] StringSeq seq;
b
interface | {
["java:type:java.util.ArrayList<String>"] StringSeq
nmodi fi edRet urnVal ue() ;
voi d nodi fiedl nParan(["java:type:java.util.ArrayList<String>"] StringSeq seq);
voi d nodi fi edOut Param(out ["java:type:java.util.ArraylList<String>"] StringSeq seq);
b

As you might expect, modifying the mapping for an operation's parameters or return value may require the application to manually convert values
from the original mapping to the modified mapping. For example, suppose we want to invoke the nodi f i edl nPar amoperation. The signature of its
proxy operation is shown below:

Java

voi d nodi fiedl nParan(java.util.List<String> seq, Ice.Current curr)

The metadata changes the mapping of the seq parameter to j ava. uti | . Li st, which is the default formal type. If a caller has a St ri ngSeq value
in the original mapping, it must convert the array as shown in the following example:

Java

String[] seq = new String[2];

seq[0] = "hi";
seq[1] = "there";
IPrx proxy = ...;

proxy. nodi fi edl nParan{java. util.Arrays. asLi st(seq));

Although we specified the instance type j ava. uti | . ArrayLi st <Stri ng> for the parameter, we are still able to pass the result of asLi st
because its return type (j ava. util . Li st <Stri ng>) is compatible with the parameter's formal type declared by the proxy method. In the case of
an operation parameter, the instance type is only relevant to a servant implementation, which may need to make assumptions about the actual type
of the parameter.

Mapping for Modified Out Parameters in Java

The mapping for an out parameter uses a generated "holder" class to convey the parameter value. If you modify the mapping of an out parameter,
as discussed in the previous section, it is possible that the holder class for the parameter's unmodified type is no longer compatible with the custom
type you have specified. The holder class generated for St ri ngSeq is shown below:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/Java+Mapping+for+Operations#JavaMappingforOperations-PassingParametersinJava

Ice 3.4.2 Documentation

Java

public final class StringSeqHol der

{

public

St ri ngSeqHol der ()

{

}

public

StringSeqHol der (String[] val ue)

{

this.val ue = val ue;

}

public String[] val ue;
}

An out parameter of type St ri ngSeq would normally map to a proxy method that used St ri ngSeqHol der to hold the parameter value. When the
parameter is modified, as is the case with the nodi f i edQut Par amoperation, the Slice-to-Java compiler cannot use St ri ngSeqHol der to hold an
instance of j ava. uti | . Li st <Stri ng>, because Stri ngSeqHol der is only appropriate for the default mapping to a native array.

As a result, the compiler handles these situations using instances of the generic class | ce. Hol der <T>, where T is the parameter's formal type.
Consider the following example:

Slice
sequence<string> StringSeq;

interface | {
voi d nodi fiedQut Paran{out ["java:type:java.util.ArrayList<String>"] StringSeq seq);

1

The compiler generates the following mapping for the nodi f i edQut Par amproxy method:
Java

voi d nodi fi edQut Paran(| ce. Hol der<j ava. util.List<java.lang.String> > seq, lce.Current curr)

The formal type of the parameter is j ava. uti | . Li st <Stri ng>, therefore the holder class becomes | ce. Hol der <j ava. uti | . Li st<String>>.

JavaBean Mapping

The Java mapping optionally generates JavaBean-style methods for the data members of class, structure, and exception types.

JavaBean Generated Methods

For each data member val of type T, the mapping generates the following methods:

Java
public T getVal ();
public void setVal (T v);

The mapping generates an additional method if T is the bool type:

Copyright © 2017, ZeroC, Inc.

Ice 3.4.2 Documentation

Java

public bool ean isVal ();

Finally, if T is a sequence type with an element type E, two methods are generated to provide direct access to elements:

Java

public E getVal (int index);
public void setVal (int index, E v);

Note that these element methods are only generated for sequence types that use the default mapping.

The Slice-to-Java compiler considers it a fatal error for a JavaBean method of a class data member to conflict with a declared operation of the class.
In this situation, you must rename the operation or the data member, or disable the generation of JavaBean methods for the data member in question.

JavaBean Metadata

The JavaBean methods are generated for a data member when the member or its enclosing type is annotated with the j ava: get set metadata. The
following example demonstrates both styles of usage:

Slice

sequence<i nt > | nt Seq;

class C {
["java: getset"] int i;
doubl e d;
s
["java: getset"]
struct S {
bool b;
string str;
}

["java: getset"]
exception E {

I nt Seq seq;
b

JavaBean methods are generated for all members of struct S and exception E, but for only one member of class C. Relevant portions of the
generated code are shown below:

Java

public class C extends |ce.Objectlnpl

{

public int i;
public int
getl ()
{

return i;
}
public void

Copyright © 2017, ZeroC, Inc.

Ice 3.4.2 Documentation

setl(int _i)

{
= _i;
}
public double d;
}
public final class S inplenents java.lang.d oneabl e
{
publ i c bool ean b;
public bool ean
get B()
{
return b;
}
public void
set B(bool ean _b)
{
b = _b;
}
publ i c bool ean
i sB()
{
return b;
}
public String str;
public String
getStr()
{
return str;
}
public void
setStr(String _str)
{
str = _str;
}
}

public class E extends |ce. User Exception

public int[] seq;

public int[]
get Seq()
{

return segq;
}
public void
setSeq(int[] _seq)
{

seq = _seq;
}
public int

get Seq(i nt _index)

Copyright © 2017, ZeroC, Inc.

Ice 3.4.2 Documentation

{
return seq[_i ndex];
}
public void
set Seq(int _index, int _val)
{
seq[_i ndex] = _val;
}
}
See Also

® Metadata

® Java Mapping for Modules

® Java Mapping for Operations
® Class Inheritance Semantics

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/Metadata
https://doc.zeroc.com/display/Ice34/Java+Mapping+for+Modules
https://doc.zeroc.com/display/Ice34/Java+Mapping+for+Operations
https://doc.zeroc.com/display/Ice34/Class+Inheritance+Semantics

	Customizing the Java Mapping

