
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

1.
2.
3.
4.

Data Encoding for Class Type IDs

Type ID Encoding version 1.0
Unlike for exception , class type IDs are not simple strings. Instead, a class type ID is marshaled as a boolean followed by either a string or a type IDs

, to conserve bandwidth. To illustrate this, consider the following class hierarchy:size

Slice

class Base {
 // ...
};

class Derived extends Base {
 // ...
};

The type IDs for the class are and . Suppose the sender marshals three instances of as part of a single slices ::Derived ::Base ::Derived
request. (For example, two instances could be out-parameters and one instance could be the return value.)

The first instance that is sent on the wire contains the type IDs and preceding their respective slices. Because marshaling ::Derived ::Base
proceeds in derived-to-base order, the first type ID that is sent is . Every time the sender sends a type ID that it has not sent previously in ::Derived
the same request, it sends the boolean value , followed by the type ID. Internally, the sender also assigns a unique positive number to each false
type ID. These numbers start at and increment by one for each type ID that has not been marshaled previously. This means that the first type ID is 1
encoded as the boolean value , followed by , and the second type ID is encoded as the boolean value , followed by .false ::Derived false ::Base

When the sender marshals the remaining two instances, it consults a lookup table of previously-marshaled type IDs. Because both type IDs were
sent previously in the same request (or reply), the sender encodes all further occurrences of as the value followed by the number ::Derived true 1
 encoded as a size, and it encodes all further occurrences of as the value followed by the number encoded as a size.::Base true 2

When the receiver reads a type ID, it first reads its boolean marker:

If the boolean is , the receiver reads a string and enters that string into a lookup table that maps integers to strings. The first new false
class type ID received in a request is numbered , the second new class type ID is numbered , and so on.1 2
If the boolean value is , the receiver reads a number encoded as a size and uses it to retrieve the corresponding class type ID from the true
lookup table.

Note that this numbering scheme is re-established for each new . (As we will see in our discussion of , parameters, encapsulation protocol messages
return values, and exceptions are always marshaled inside an enclosing encapsulation.) For subsequent or nested encapsulation, the numbering
scheme restarts, with the first new type ID being assigned the value . In other words, each encapsulation uses its own independent numbering 1
scheme for class type IDs to satisfy the constraint that encapsulations must not depend on their surrounding context.

Encoding class type IDs in this way provides significant savings in bandwidth: whenever an ID is marshaled a second and subsequent time, it is
marshaled as a two-byte value (assuming no more than 254 distinct type IDs per request) instead of as a string. Because type IDs can be long,
especially if you are using nested modules, the savings are considerable.

Type ID Encoding version 1.1
Each of a class instance has a leading byte containing flags that describe various aspects of the slice, including whether the slice includes a slice
type ID and how that type ID is encoded. There are four possibilities:

No type ID included
Type ID is encoded as a string
Type ID is encoded as an index
Type ID is encoded as a compact ID

The initial slice of an instance, representing the most-derived type, always contains some form of type ID so that the receiver knows what Slice type
is present. Depending on the used by the sender, subsequent slices may or may not include a type ID: the compact format omits type IDs in format
subsequent slices, whereas the sliced format includes a type ID in every slice. A receiver need only examine the slice flags to discover how to
decode the type ID.

String Type IDs

https://doc.zeroc.com/display/Ice35/Type+IDs
https://doc.zeroc.com/display/Ice35/Basic+Data+Encoding#BasicDataEncoding-size
https://doc.zeroc.com/display/Ice35/Basic+Data+Encoding#BasicDataEncoding-slice
https://doc.zeroc.com/display/Ice35/Basic+Data+Encoding#BasicDataEncoding-encapsulation
https://doc.zeroc.com/display/Ice35/Protocol+Messages
https://doc.zeroc.com/display/Ice35/Basic+Data+Encoding#BasicDataEncoding-slice
https://doc.zeroc.com/display/Ice35/Understanding+Objects+and+Exceptions

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

The encoding for string type IDs uses a "compression" scheme similar to that of version 1.0: within an , a given type ID is never encapsulation
encoded as a string more than once. The first time a sender encounters a type ID, the sender assigns an integer index to the ID and encodes the ID
as a string. For all subsequent occurrences of the same type ID within the encapsulation, the sender encodes the index associated with that type ID
as a . Index values start at and increase sequentially with each new type ID. The sender is responsible for setting the relevant bits in the ofsize 1 flags
each slice to specify how the type ID is encoded.

The slice flags in version 1.1 of the encoding serve the same purpose as the boolean value that precedes each type ID in version 1.0, without
consuming an entire byte.

Compact Type IDs

As a way of further reducing the overhead associated with class instances, version 1.1 adds the ability to substitute numeric values for strings when
encoding type IDs. Consider the following Slice definitions:

Slice

class Base(3) {
 // ...
};

class Derived(4) extends Base {
 // ...
};

class MoreDerived extends Derived {
 // ...
};

The value in parentheses after the class name represents the type ID for the class. The sender's determines whether each slice compact format
includes a type ID. If a given slice includes a type ID, the encoding always uses a compact type ID (if defined) in preference to its string equivalent.
Suppose a sender is encoding an instance of in the sliced format. The initial slice uses the string type ID for , the next MoreDerived MoreDerived
slice uses the compact type ID for , and the last slice uses the compact type ID for .Derived Base

A compact type ID is encoded as a , with the relevant bits set in the .size slice flags

See Also

Type IDs
Basic Data Encoding
Protocol Messages

The developer is responsible for ensuring compact type IDs are sufficiently unique. Using values less than 255 produces the most efficient
encoding.

https://doc.zeroc.com/display/Ice35/Basic+Data+Encoding#BasicDataEncoding-encapsulation
https://doc.zeroc.com/display/Ice35/Basic+Data+Encoding#BasicDataEncoding-size
https://doc.zeroc.com/display/Ice35/Basic+Data+Encoding#BasicDataEncoding-slice
https://doc.zeroc.com/display/Ice35/Understanding+Objects+and+Exceptions
https://doc.zeroc.com/display/Ice35/Basic+Data+Encoding#BasicDataEncoding-size
https://doc.zeroc.com/display/Ice35/Basic+Data+Encoding#BasicDataEncoding-slice
https://doc.zeroc.com/display/Ice35/Type+IDs
https://doc.zeroc.com/display/Ice35/Basic+Data+Encoding
https://doc.zeroc.com/display/Ice35/Protocol+Messages

	Data Encoding for Class Type IDs

