
Ice 3.7.1 Documentation

1 Copyright 2018, ZeroC, Inc.

Writing an Ice Application with C++ (C++11)
This page shows how to create an Ice application with C++ using the Ice C++11 mapping.

On this page:

Compiling a Slice Definition for C++
Writing and Compiling a Server in C++
Writing and Compiling a Client in C++
Running Client and Server in C++

Compiling a Slice Definition for C++
The first step in creating our C++ application is to compile our to generate C++ proxies and skeletons. You can compile the definition Slice definition
as follows:

slice2cpp Printer.ice

The compiler produces two C++ source files from this definition, and .slice2cpp Printer.h Printer.cpp

Printer.h
The header file contains C++ type definitions that correspond to the Slice definitions for our interface. This header file Printer.h Printer
must be included in both the client and the server source code.

Printer.cpp
The file contains the source code for our interface. The generated source contains type-specific run-time support Printer.cpp Printer
for both clients and servers. For example, it contains code that marshals parameter data (the string passed to the operation) printString
on the client side and unmarshals that data on the server side.
The file must be compiled and linked into both client and server.Printer.cpp

Writing and Compiling a Server in C++
The source code for the server takes only a few lines and is shown in full here:

https://doc.zeroc.com/display/Ice37/Writing+a+Slice+File

Ice 3.7.1 Documentation

2 Copyright 2018, ZeroC, Inc.

C++

#include <Ice/Ice.h>
#include <Printer.h>

using namespace std;
using namespace Demo;

class PrinterI : public Printer
{
public:
 virtual void printString(string s, const Ice::Current&) override;
};

void
PrinterI::printString(string s, const Ice::Current&)
{
 cout << s << endl;
}

int
main(int argc, char* argv[])
{
 try
 {
 Ice::CommunicatorHolder ich(argc, argv);
 auto adapter = ich->createObjectAdapterWithEndpoints("SimplePrinterAdapter", "default -p 10000");
 auto servant = make_shared<PrinterI>();
 adapter->add(servant, Ice::stringToIdentity("SimplePrinter"));
 adapter->activate();
 ich->waitForShutdown();
 }
 catch(const std::exception& e)
 {
 cerr << e.what() << endl;
 return 1;
 }
 return 0;
}

Every Ice source file starts with an include directive for , which contains the definitions for the Ice run time. We also include , which Ice.h Printer.h
was generated by the Slice compiler and contains the C++ definitions for our printer interface, and we import the contents of the and std Demo
namespaces for brevity in the code that follows:

C++

#include <Ice/Ice.h>
#include <Printer.h>

using namespace std;
using namespace Demo;

Our server implements a single printer servant, of type . Looking at the generated code in , we find the following (tidied up a PrinterI Printer.h
little to get rid of irrelevant detail):

Ice 3.7.1 Documentation

3 Copyright 2018, ZeroC, Inc.

C++

namespace Demo
{
 class Printer : public virtual Ice::Object
 {
 public:
 virtual void printString(std::string, const Ice::Current&) = 0;
 };
}

The skeleton class definition is generated by the Slice compiler. (Note that the method is pure virtual so the skeleton class Printer printString
cannot be instantiated.) Our servant class inherits from the skeleton class to provide an implementation of the pure virtual method. printString
(By convention, we use an -suffix to indicate that the class implements an interface.)I

C++

class PrinterI : public Printer
{
public:
 virtual void printString(string s, const Ice::Current&) override;
};

The implementation of the method is trivial: it simply writes its string argument to :printString stdout

C++

void
PrinterI::printString(string s, const Ice::Current&)
{
 cout << s << endl;
}

Note that has a second parameter of type . As you can see from the definition of , the printString Ice::Current Printer::printString
Slice compiler generates a default argument for this parameter, so we can leave it unused in our implementation. (We will examine the purpose of the

 parameter later.)Ice::Current

What follows is the server main program. Note the general structure of the code:

C++

int
main(int argc, char* argv[])
{
 try
 {
 Ice::CommunicatorHolder ich(argc, argv);
 // Server implementation here ...
 }
 catch(const std::exception& e)
 {
 cerr << e.what() << endl;
 return 1;
 }
 return 0;
}

https://doc.zeroc.com/display/Ice37/The+Current+Object

Ice 3.7.1 Documentation

4 Copyright 2018, ZeroC, Inc.

1.

2.
3.

4.

5.

The body of contains a try/catch block, and we start by creating an Ice on the stack. We pass and to the main CommunicatorHolder argc argv Co

 because the server may have command-line arguments that are of interest to the run time; for this example, the server does mmunicatorHolder
not require any command-line arguments.

Next, we have the actual server code:

C++

 auto adapter = ich->createObjectAdapterWithEndpoints("SimplePrinterAdapter", "default -p 10000");
 auto servant = make_shared<PrinterI>();
 adapter->add(servant, icHolder->stringToIdentity("SimplePrinter"));
 adapter->activate();
 ich->waitForShutdown();

The code goes through the following steps:

We create an object adapter by calling on the instance (through createObjectAdapterWithEndpoints Communicator Communicato
s overloaded arrow). The arguments we pass are (which is the name of the adapter) rHolder' operator "SimplePrinterAdapter"

and , which instructs the adapter to listen for incoming requests using the default transport protocol (TCP/IP) at port "default -p 10000"
number 10000.
At this point, the server-side run time is initialized and we create a servant for our interface by instantiating a object.Printer PrinterI
We inform the object adapter of the presence of a new servant by calling on the adapter; the arguments to are the servant we have add add
just instantiated, plus an identifier. In this case, the string is the name of the Ice object. (If we had multiple printers, "SimplePrinter"
each would have a different name or, more correctly, a different .)object identity
Next, we activate the adapter by calling its method. (The adapter is initially created in a holding state; this is useful if we have activate
many servants that share the same adapter and do not want requests to be processed until after all the servants have been instantiated.)
The server starts to process incoming requests from clients as soon as the adapter is activated.
Finally, we call . This call suspends the calling thread until the server is shut down. (For now, we will simply interrupt the waitForShutdown
server on the command line when we no longer need it, which terminates the server immediately.)

Assuming that we have the server code in a file called , we can compile it as follows:Server.cpp

c++ -I. -DICE_CPP11_MAPPING -c Printer.cpp Server.cpp

This compiles both our application code and the code that was generated by the Slice compiler. Depending on your platform, you may have to add
additional include directives or other options to the compiler; please see the demo programs that ship with Ice for the details.

Finally, we need to link the server into an executable:

c++ -o server Printer.o Server.o -lIce++11

Again, depending on the platform, the actual list of libraries you need to link against may be longer. The demo programs that ship with Ice contain all
the detail.

Writing and Compiling a Client in C++
The client code looks very similar to the server. Here it is in full:

-DICE_CPP11_MAPPING enables the new Ice C++11 mapping

https://doc.zeroc.com/pages/viewpage.action?pageId=18255285

Ice 3.7.1 Documentation

5 Copyright 2018, ZeroC, Inc.

1.

2.

3.

4.
5.

C++

#include <Ice/Ice.h>
#include <Printer.h>
#include <stdexcept>

using namespace std;
using namespace Demo;

int
main(int argc, char* argv[])
{
 try
 {
 Ice::CommunicatorHolder ich(argc, argv);
 auto base = ich->stringToProxy("SimplePrinter:default -p 10000");
 auto printer = Ice::checkedCast<PrinterPrx>(base);
 if(!printer)
 {
 throw std::runtime_error("Invalid proxy");
 }

 printer->printString("Hello World!");
 }
 catch(const std::exception& e)
 {
 cerr << e.what() << endl;
 return 1;
 }
 return 0;
}

Note that the overall code layout is the same as for the server: we include the headers for the Ice run time and the header generated by the Slice
compiler, and we use the same try/catch blocks to deal with errors.

The client code does the following:

As for the server, we initialize the Ice run time by creating an object, which creates and holds an Ice::CommunicatorHolder Ice::
Communicator.
The next step is to obtain a proxy for the remote printer. We create a proxy by calling on the communicator, with the string stringToProxy

. Note that the string contains the object identity and the port number that were used by the "SimplePrinter:default -p 10000"
server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for now; we will see more
architecturally sound ways of doing this when we discuss .)IceGrid
The proxy returned by is of type , which is at the root of the inheritance tree for interfaces. But to stringToProxy Ice::ObjectPrx
actually talk to our printer, we need a proxy for a interface, not an interface. To do this, we need to do a down-cast by Printer Object
calling . A checked cast sends a message to the server, effectively asking "is this a proxy for a checkedCast<PrinterPrx> Printer
interface?" If so, the call returns a proxy to a ; otherwise, if the proxy denotes an interface of some other type, the call returns a null Printer
proxy.
We test that the down-cast succeeded and, if not, throw a that terminates the client.runtime_error
We now have a live proxy in our address space and can call the method, passing it the time-honored printString "Hello World!"
string. The server prints that string on its terminal.

Compiling and linking the client looks much the same as for the server:

c++ -I. -DICE_CPP11_MAPPING -c Printer.cpp Client.cpp
c++ -o client Printer.o Client.o -lIce++11

Running Client and Server in C++
To run client and server, we first start the server in a separate window:

./server

https://doc.zeroc.com/display/Ice37/IceGrid

Ice 3.7.1 Documentation

6 Copyright 2018, ZeroC, Inc.

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

./client

The client runs and exits without producing any output; however, in the server window, we see the that is produced by the printer. "Hello World!"
To get rid of the server, we interrupt it on the command line for now.

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get:

Network.cpp:471: Ice::ConnectFailedException:
connect failed: Connection refused

See Also

The Current Object
IceGrid

https://doc.zeroc.com/display/Ice37/The+Current+Object
https://doc.zeroc.com/display/Ice37/IceGrid

	Writing an Ice Application with C++ (C++11)

