
Ice 3.7.1 Documentation

1 Copyright 2018, ZeroC, Inc.

Writing an Ice Application with C-Sharp
This page shows how to create an Ice application with C#.

On this page:

Create Projects for your Client and Server Applications
Compile your Slice File
Write and Compile your Server
Write and Compile your Client
Run your Client and Server

Create Projects for your Client and Server Applications
We create two projects, one for the Server application and one for the Client application. These are regular Console projects with very little Ice-
specific additions.

.NET Framework 4.5 with Visual Studio
Open Visual Studio and create a new Console Application

Create the client project using "File > Add > New Project..."

Ice 3.7.1 Documentation

2 Copyright 2018, ZeroC, Inc.

Add the and NuGet package to the projects with the NuGet Package Manager, found in "Tools > zeroc.icebuilder.msbuild zeroc.ice.net
NuGet Package Manager > Manage NuGet Packages for Solution...".

Ice 3.7.1 Documentation

3 Copyright 2018, ZeroC, Inc.

.NET 6.0
Open a new Command Prompt a run the following command to create the server and client projects:

dotnet new console -o Server

This generates a new .NET Core console application project in the directory.Server

Then add references to the and NuGet packages to this project:zeroc.icebuilder.msbuild zeroc.ice.net

dotnet add Server package zeroc.icebuilder.msbuild
dotnet add Server package zeroc.ice.net

Finally, repeat these steps for the client project:

dotnet new console -o Client
dotnet add Client package zeroc.icebuilder.msbuild
dotnet add Client package zeroc.ice.net

Compile your Slice File
The next step is to add the () created earlier to each project, and then compile this Slice file.Slice file Printer.ice

800px

.NET Framework 4.5 with Visual Studio
Open the "Project > Add Existing Item" dialog and add to your Project:Printer.ice

https://doc.zeroc.com/display/Ice37/Writing+a+Slice+File

Ice 3.7.1 Documentation

4 Copyright 2018, ZeroC, Inc.

If the is installed, it immediately generates the file from unless you disabled Ice Builder for Visual Studio generated\Printer.cs Printer.ice au
 in the Ice Builder.tomatic building

If you have automatic building disabled, select to build your project. The build generates Build from generated\Printer.cs Printer.ice
(using Ice Builder) and then compiles both and the default no-op .generated\Printer.cs Program.cs

https://github.com/zeroc-ice/ice-builder-visualstudio
https://github.com/zeroc-ice/ice-builder-visualstudio#ice-home-configuration
https://github.com/zeroc-ice/ice-builder-visualstudio#ice-home-configuration

Ice 3.7.1 Documentation

5 Copyright 2018, ZeroC, Inc.

.NET 6.0
Add a Slice item that includes to your two projects. The code below shows the client project:Printer.ice

Client.csproj

<?xml version="1.0" encoding="utf-8"?>
<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net6.0</TargetFramework>
 </PropertyGroup>
 <ItemGroup>
 <SliceCompile Include="../Printer.ice" />
 <PackageReference Include="zeroc.ice.net" Version="3.7.8" />
 <PackageReference Include="zeroc.icebuilder.msbuild" Version="5.0.9" />
 </ItemGroup>
</Project>

When building the project, the task (imported automatically from the NuGet package) compiles SliceCompile zeroc.icebuilder.msbuild Pri
 into using the Slice to C# compiler, slice2cs.nter.ice generated/Printer.cs

Use the following command to build the projects:

dotnet build Server
dotnet build Client

Ice Builder invokes the Slice to C# compiler () to compile Slice files into C# files.slice2cs

Ice 3.7.1 Documentation

6 Copyright 2018, ZeroC, Inc.

Write and Compile your Server
To implement our interface, we must create a servant class. By convention, a servant class uses the name of its interface with an -suffix, Printer I
so our servant class is called and we will place it into the default C# source file Program.cs:PrinterI

C#

using System;

namespace Server
{
 public class PrinterI : Demo.PrinterDisp_
 {
 public override void printString(string s, Ice.Current current)
 {
 Console.WriteLine(s);
 }
 }

 class Program
 {
 static void Main(string[] args)
 {
 }
 }
}

The class inherits from a base class called , which is generated by the compiler. The base class is abstract PrinterI PrinterDisp_ slice2cs
and contains a method that accepts a string for the printer to print and a parameter of type . (For now we will ignore the printString Ice.Current

 parameter.) Our implementation of the method simply writes its argument to the terminal.Ice.Current printString

The remainder of the server code follows in and is shown in full here:Program.cs

https://doc.zeroc.com/display/Ice37/The+Current+Object

Ice 3.7.1 Documentation

7 Copyright 2018, ZeroC, Inc.

1.

2.

3.
4.

5.

6.

C#

using System;

namespace Server
{
 public class PrinterI : Demo.PrinterDisp_
 {
 public override void printString(string s, Ice.Current current)
 {
 Console.WriteLine(s);
 }
 }

 public class Program
 {
 public static int Main(string[] args)
 {
 try
 {
 using(Ice.Communicator communicator = Ice.Util.initialize(ref args))
 {
 var adapter =
 communicator.createObjectAdapterWithEndpoints("SimplePrinterAdapter", "default -h
localhost -p 10000");
 adapter.add(new PrinterI(), Ice.Util.stringToIdentity("SimplePrinter"));
 adapter.activate();
 communicator.waitForShutdown();
 }
 }
 catch(Exception e)
 {
 Console.Error.WriteLine(e);
 return 1;
 }
 return 0;
 }
 }
}

The body of contains a block in which we place all the server code, followed by a block. The catch block catches all exceptions that Main try catch
may be thrown by the code; the intent is that, if the code encounters an unexpected run-time exception anywhere, the stack is unwound all the way
back to , which prints the exception and then returns failure to the operating system.Main

The object implements , which allows us to use the statement for the initialization of the Ice.Communicator IDisposable using Ice.
 object. This ensures the communicator method is called when the block goes out of scope. Doing this is essential Communicator destroy using

in order to correctly finalize the Ice run time.

The body of our block contains the actual server code.try

The code goes through the following steps:

We initialize the Ice run time by calling . (We pass to this call because the server may have command-line Ice.Util.initialize args
arguments that are of interest to the run time; for this example, the server does not require any command-line arguments.) The call to initi

 returns an reference, which is the main object in the Ice run time.alize Ice.Communicator
We create an object adapter by calling on the instance. The arguments we createObjectAdapterWithEndpoints Communicator
pass are (which is the name of the adapter) and , which instructs the adapter to listen "SimplePrinterAdapter" "default -p 10000"
for incoming requests using the default transport protocol (TCP/IP) at port number 10000.
At this point, the server-side run time is initialized and we create a servant for our interface by instantiating a object.Printer PrinterI
We inform the object adapter of the presence of a new servant by calling on the adapter; the arguments to are the servant we have add add
just instantiated, plus an identifier. In this case, the string is the name of the Ice object. (If we had multiple printers, "SimplePrinter"
each would have a different name or, more correctly, a different .)object identity
Next, we activate the adapter by calling its method. (The adapter is initially created in a holding state; this is useful if we have activate
many servants that share the same adapter and do not want requests to be processed until after all the servants have been instantiated.)
Finally, we call . This call suspends the calling thread until the server implementation terminates, either by making a call waitForShutdown
to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line when we no longer
need it.)

Ice 3.7.1 Documentation

8 Copyright 2018, ZeroC, Inc.

We can compile the server code as follows:

.NET Framework 4.5 with Visual Studio
Build the server project using "Build > Builder Server"

.NET 6.0
Build the server project using the dotnet command:build

cd Server
dotnet build

Write and Compile your Client
The client code, in , looks very similar to the server.Client/Program.cs

Here it is in full:

Ice 3.7.1 Documentation

9 Copyright 2018, ZeroC, Inc.

1.
2.

3.

4.
5.

C#

using Demo;
using System;

namespace Client
{
 public class Program
 {
 public static int Main(string[] args)
 {
 try
 {
 using(Ice.Communicator communicator = Ice.Util.initialize(ref args))
 {
 var obj = communicator.stringToProxy("SimplePrinter:default -h localhost -p 10000");
 var printer = PrinterPrxHelper.checkedCast(obj);
 if(printer == null)
 {
 throw new ApplicationException("Invalid proxy");
 }

 printer.printString("Hello World!");
 }
 }
 catch(Exception e)
 {
 Console.Error.WriteLine(e);
 return 1;
 }
 return 0;
 }
 }
}

Note that the overall code layout is the same as for the server: we use the same and blocks to deal with errors. The code in the try catch try
block does the following:

As for the server, we initialize the Ice run time by calling within the statementIce.Util.initialize using
The next step is to obtain a proxy for the remote printer. We create a proxy by calling on the communicator, with the string stringToProxy

. Note that the string contains the object identity and the port number that were used by the "SimplePrinter:default -p 10000"
server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for now; we will see more
architecturally sound ways of doing this when we discuss .IceGrid
The proxy returned by is of type , which is at the root of the inheritance tree for interfaces and classes. stringToProxy Ice.ObjectPrx
But to actually talk to our printer, we need a proxy for a interface, not an interface. To do this, we need to do a down-cast Printer Object
by calling . A checked cast sends a message to the server, effectively asking "is this a proxy for a PrinterPrxHelper.checkedCast Pri

 interface?" If so, the call returns a proxy of type ; otherwise, if the proxy denotes an interface of some other type, the nter Demo::Printer
call returns null.
We test that the down-cast succeeded and, if not, throw an error message that terminates the client.
We now have a live proxy in our address space and can call the method, passing it the time-honored printString "Hello World!"
string. The server prints that string on its terminal.

The client's project is just like the server's project shown earlier.

.NET Framework 4.5 with Visual Studio
Build the client project using "Build > Builder Client"

https://doc.zeroc.com/display/Ice37/IceGrid

Ice 3.7.1 Documentation

10 Copyright 2018, ZeroC, Inc.

.NET 6.0
Build the client project using dotnet command:build

cd Client
dotnet build

Run your Client and Server
To run client and server, we first start the server in a separate window:

.NET Framework 4.5

server

.NET 6.0

cd Server
dotnet run

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

.NET Framework 4.5

Ice 3.7.1 Documentation

11 Copyright 2018, ZeroC, Inc.

client

.NET 6.0

cd Client
dotnet run

The client runs and exits without producing any output; however, in the server window, we see the that is produced by the printer. "Hello World!"
To get rid of the server, we just interrupt it on the command line for now.

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

Ice.ConnectionRefusedException
 error = 0

See Also

Client-Side Slice-to-C-Sharp Mapping
Server-Side Slice-to-C-Sharp Mapping
The Current Object
IceGrid

https://doc.zeroc.com/display/Ice37/Client-Side+Slice-to-C-Sharp+Mapping
https://doc.zeroc.com/display/Ice37/Server-Side+Slice-to-C-Sharp+Mapping
https://doc.zeroc.com/display/Ice37/The+Current+Object
https://doc.zeroc.com/display/Ice37/IceGrid

	Writing an Ice Application with C-Sharp

