
Ice 3.7.1 Documentation

1 Copyright 2018, ZeroC, Inc.

Writing an Ice Application with Java
This page shows how to create an Ice application with Java.

On this page:

Create Projects for your Client and Server Applications
Compiling a Slice Definition for Java
Writing and Compiling a Server in Java
Writing and Compiling a Client in Java
Running Client and Server in Java

Create Projects for your Client and Server Applications
We will use to create our application projects. You must install Gradle before continuing with this tutorial.Gradle

Open a new Command Prompt and run the following commands to generate a new project:

mkdir printer
cd printer
gradle init

For this demo we're going to use a project with two sub-projects to build the Client and Server applications. The requirements for our sub-projects are
the same so we'll do all the setup in the block of the root project, which applies to all sub-projects. Edit the generated subprojects build.gradle
file to look like the one below:

https://gradle.org/

Ice 3.7.1 Documentation

2 Copyright 2018, ZeroC, Inc.

build.gradle

//
// Install the gradle Ice Builder plug-in from the plug-in portal
//
plugins {
 id 'com.zeroc.gradle.ice-builder.slice' version '1.4.7' apply false
}

subprojects {
 //
 // Apply Java and Ice Builder plug-ins to all sub-projects
 //
 apply plugin: 'java'
 apply plugin: 'com.zeroc.gradle.ice-builder.slice'

 //
 // Both Client and Server projects share the Printer.ice Slice definitions
 //
 slice {
 java {
 files = [file("../Printer.ice")]
 }
 }

 //
 // Use Ice JAR files from maven central repository
 //
 repositories {
 mavenCentral()
 }

 //
 // Both Client and Server depend only on Ice JAR
 //
 dependencies {
 implementation 'com.zeroc:ice:3.7.2'
 }

 //
 // Create a JAR file with the appropriate Main-Class and Class-Path attributes
 //
 jar {
 manifest {
 attributes(
 "Main-Class": project.name.capitalize(),
 "Class-Path": configurations.runtime.resolve().collect { it.toURI() }.join(' ')
)
 }
 }
}

We must also edit the generated to define our sub-projects:settings.gradle

settings.gradle

rootProject.name = 'printer'
include 'client'
include 'server'

Finally we need to create the directories for client and server projects:

Ice 3.7.1 Documentation

3 Copyright 2018, ZeroC, Inc.

1.

mkdir client
mkdir server

Compiling a Slice Definition for Java
The next step is to add the (), and then compile this Slice file. When building the project, the s task (added Slice file Printer.ice liceCompile
automatically by the Ice Builder plug-in) compiles and places the generated code into using the Slice to Printer.ice build/generated-src
Java compiler, .slice2java

Writing and Compiling a Server in Java
To implement our interface, we must create a servant class. By convention, a servant class uses the name of its interface with an -suffix, Printer I
so our servant class is called and placed into a source file :PrinterI server/src/main/java/PrinterI.java

server/src/main/java/PrinterI.java

public class PrinterI implements Demo.Printer
{
 public void printString(String s, com.zeroc.Ice.Current current)
 {
 System.out.println(s);
 }
}

The class implements the interface , which is generated by the compiler. The interface defines a PrinterI Printer slice2java printString
method that accepts a string for the printer to print and a parameter of type . (For now we will ignore the parameter.) Our Current Current
implementation of the method simply writes its argument to the terminal.printString

The remainder of the server code is in a source file called , shown in full here:server/src/main/java/Server.java

server/src/main/java/Server.java

public class Server
{
 public static void main(String[] args)
 {
 try(com.zeroc.Ice.Communicator communicator = com.zeroc.Ice.Util.initialize(args))
 {
 com.zeroc.Ice.ObjectAdapter adapter = communicator.createObjectAdapterWithEndpoints
("SimplePrinterAdapter", "default -p 10000");
 com.zeroc.Ice.Object object = new PrinterI();
 adapter.add(object, com.zeroc.Ice.Util.stringToIdentity("SimplePrinter"));
 adapter.activate();
 communicator.waitForShutdown();
 }
 }
}

The body of contains a block in which we place all the server code. The object implements main try-with-resources Communicator java.
, which allows us to use the statement for the initialization of the object. This lang.AutoCloseable try-with-resources Communicator

ensures the communicator method is called when the block goes out of scope. Doing this is essential in order to correctly finalize the destroy try
Ice run time.

The body of our block contains the actual server code. The code goes through the following steps:try

A communicator starts a number of non-background threads. Destroying the communicator terminates all these threads.

https://doc.zeroc.com/display/Ice37/Writing+a+Slice+File
https://doc.zeroc.com/display/Ice37/The+Current+Object

Ice 3.7.1 Documentation

4 Copyright 2018, ZeroC, Inc.

1.

2.

3.
4.

5.

6.

1.

2.

3.

4.
5.

We initialize the Ice run time by calling . (We pass to this call because the server may have com.zeroc.Ice.Util.initialize args
command-line arguments that are of interest to the run time; for this example, the server does not require any command-line arguments.)
The call to returns a reference, which is the main object in the Ice run time.initialize Communicator
We create an object adapter by calling on the instance. The arguments we createObjectAdapterWithEndpoints Communicator
pass are (which is the name of the adapter) and , which instructs the adapter to listen "SimplePrinterAdapter" "default -p 10000"
for incoming requests using the default transport protocol (TCP/IP) at port number 10000.
At this point, the server-side run time is initialized and we create a servant for our interface by instantiating a object.Printer PrinterI
We inform the object adapter of the presence of a new servant by calling on the adapter; the arguments to are the servant we have add add
just instantiated, plus an identifier. In this case, the string is the name of the Ice object. (If we had multiple printers, "SimplePrinter"
each would have a different name or, more correctly, a different .)object identity
Next, we activate the adapter by calling its method. (The adapter is initially created in a holding state; this is useful if we have activate
many servants that share the same adapter and do not want requests to be processed until after all the servants have been instantiated.)
Finally, we call . This call suspends the calling thread until the server is shut down (For now, we will simply interrupt the waitForShutdown
server on the command line when we no longer need it, which terminates the server immediately.)

We can compile the server code as follows:

gradlew :server:build

Writing and Compiling a Client in Java
The client code, in , looks very similar to the server. Here it is in full:client/src/main/java/Client.java

client/src/main/java/Client.java

public class Client
{
 public static void main(String[] args)
 {
 try(com.zeroc.Ice.Communicator communicator = com.zeroc.Ice.Util.initialize(args))
 {
 com.zeroc.Ice.ObjectPrx base = communicator.stringToProxy("SimplePrinter:default -p 10000");
 Demo.PrinterPrx printer = Demo.PrinterPrx.checkedCast(base);
 if(printer == null)
 {
 throw new Error("Invalid proxy");
 }
 printer.printString("Hello World!");
 }
 }
}

Note that the overall code layout is the same as for the server: we use the same and blocks to deal with errors. The code in the try catch try
block does the following:

As for the server, we initialize the Ice run time by calling within the Java com.zeroc.Ice.Util.initialize try-with-resources
statement.
The next step is to obtain a proxy for the remote printer. We create a proxy by calling on the communicator, with the string stringToProxy

. Note that the string contains the object identity and the port number that were used by the "SimplePrinter:default -p 10000"
server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for now; we will see more
architecturally sound ways of doing this when we discuss .)IceGrid
The proxy returned by is of type , which is at the root of the inheritance tree for interfaces. stringToProxy com.zeroc.Ice.ObjectPrx
But to actually talk to our printer, we need a proxy for a interface, not an interface. To do this, we need to do a down-cast Printer Object
by calling . A checked cast sends a message to the server, effectively asking "is this a proxy for a PrinterPrx.checkedCast Printer
interface?" If so, the call returns a proxy of type ; otherwise, if the proxy denotes an interface of some other type, the call Demo::Printer
returns null.
We test that the down-cast succeeded and, if not, throw an error message that terminates the client.
We now have a live proxy in our address space and can call the method, passing it the time-honored printString "Hello World!"
string. The server prints that string on its terminal.

Compiling the client looks much the same as for the server:

gradlew :client:build

https://doc.zeroc.com/display/Ice37/IceGrid

Ice 3.7.1 Documentation

5 Copyright 2018, ZeroC, Inc.

Running Client and Server in Java
To run client and server, we first start the server in a separate window:

java -jar server/build/libs/server.jar

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

java -jar client/builds/libs/client.jar

The client runs and exits without producing any output; however, in the server window, we see the that is produced by the printer. "Hello World!"
To get rid of the server, we interrupt it on the command line for now.

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

com.zeroc.Ice.ConnectionRefusedException
 error = 0
 at ...
 at Client.run(Client.java:65)
Caused by: java.net.ConnectException: Connection refused
 ...

See Also

Client-Side Slice-to-Java Mapping
Server-Side Slice-to-Java Mapping
The Current Object
IceGrid

https://doc.zeroc.com/display/Ice37/Client-Side+Slice-to-Java+Mapping
https://doc.zeroc.com/display/Ice37/Server-Side+Slice-to-Java+Mapping
https://doc.zeroc.com/display/Ice37/The+Current+Object
https://doc.zeroc.com/display/Ice37/IceGrid

	Writing an Ice Application with Java

