Ice 3.7.1 Documentation

Writing an Ice Application with JavaScript

This page shows how to create an Ice client application with JavaScript.

On this page:

® Compiling a Slice Definition for JavaScript
® Using Ice with NodeJS

© Writing a NodeJS Client

© Running the NodeJS Client
® Using Ice in a Browser

Compiling a Slice Definition for JavaScript

The first step in creating our JavaScript application is to compile our Slice definition to generate JavaScript proxies. You can compile the definition as
follows:

slice2js Printer.ice

The sl i ce2j s compiler produces a single source file, Pri nt er. j s, from this definition. The exact contents of the source file do not concern us for
now — it contains the generated code that corresponds to the Pri nt er interface we defined in Printer. i ce.

Using Ice with NodeJS

The language mapping is the same whether you're writing applications for NodeJS or a browser, but the code style is different enough that we
describe the two platforms separately.

Writing a NodeJS Client

The client code, in Cl i ent . j s, is shown below in full:

Copyright 2018, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Writing+a+Slice+File

Ice 3.7.1 Documentation

JavaScript

const
const

lce = require("ice").lce;
Denp = require("./generated/Printer"). Deno;

(async function()

{
| et communi cator;
try
{
comuni cator = lce.initialize();
const base = communi cator. stringToProxy("Si npl ePrinter:default -p 10000");
const printer = await Denp. PrinterPrx.checkedCast (base);
if(printer)
{
await printer.printString("Hello Wrld!");
}
el se
{
consol e.log("Invalid proxy");
}
}
cat ch(ex)
{
consol e.log(ex.toString());
process. exi t Code = 1;
}
finally
{
i f (comruni cator)
{
awai t conmuni cat or. destroy();
}
}
1))

The program begins with r equi r e statements that assign modules from the Ice run time and the generated code to convenient local variables. (Thes
e statements are necessary for use with NodeJS. Browser applications would omit these statements and load the modules a different way.)

The program then defines an asynchronous function, which allows us to use the awai t keyword in our code when making proxy invocations. Here
are the notable aspects of this code:

1.

2.

The body of the function begins by calling I ce. i ni ti al i ze to initialize the Ice run time. The calltoini ti al i ze returnsan | ce.
Communi cat or reference, which is the main object in the Ice run time.

The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with the string
"SinplePrinter:default -p 10000". Note that the string contains the object identity and the port number that were used by the
server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for now; we will see more
architecturally sound ways of doing this when we discuss IceGrid.)

. The proxy returned by st ri ngToPr oxy is of type | ce. Obj ect Pr x, which is at the root of the inheritance tree for interfaces. But to actually

talk to our printer, we need a proxy for a Deno: : Pri nt er interface, not an Obj ect interface. To do this, we need to do a down-cast by
calling Deno. Pri nt er Prx. checkedCast . A checked cast sends a message to the server, effectively asking "is this a proxy for a Deno: :
Pri nt er interface?" If so, the call returns a proxy of type Deno: : Pri nt er Pr x; otherwise, if the proxy denotes an interface of some other
type, the call returns nul | .

. The checkedCast function involves a remote invocation to the server, which means this function has asynchronous semantics and

therefore it returns a new promise object. We apply the awai t keyword to the promise to wait for the call to complete.

. If checkedCast returns a non-null value, we now have a live proxy in our address space and can call the pri nt St ri ng method, passing it

the time-honored "Hel | o Wor | d! " string. The server prints that string on its terminal. Again, pri nt St ri ng is a remote invocation, and it
returns a promise that we await.

. The fi nal | y block is executed after the t ry block has completed, whether or not it completes successfully. If we successfully created a

communicator in the t ry block, we destroy it here. Doing this is essential in order to correctly finalize the Ice run time: the program must call
dest r oy on any communicator it has created; otherwise, undefined behavior results. The dest r oy function has asynchronous semantics,
SO we await it to ensure no subsequent code is executed until dest r oy completes.

Running the NodeJS Client

Copyright 2018, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/JavaScript+Mapping+for+Modules
https://doc.zeroc.com/display/Ice37/IceGrid

Ice 3.7.1 Documentation

The server must be started before the client. Since Ice for JavaScript does not currently include a complete server-side implementation, we need to
use a server from another language mapping. In this case, we will use the C++ server:

server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

node Cient.js

The client runs and exits without producing any output; however, in the server window, we see the "Hel | o Wor | d! " that is produced by the printer.
To get rid of the server, we interrupt it on the command line.

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

I ce:: Connecti onRef usedExcepti on
ice_cause: "Error: connect ECONNREFUSED'
error: " ECONNREFUSED'

Note that, to successfully run the client, NodeJS must be able to locate the Ice for JavaScript modules. See the Ice for JavaScript installation
instructions for more information.

Using Ice in a Browser

The client code, ind i ent . j s, is shown below in full:

JavaScript
(function()({
const conmunicator = lce.initialize();

async function printString()

{

try

{
set St at e(St at e. Busy) ;
const hostnanme = docunent. | ocation. hostnane || "127.0.0.1";
const proxy = communi cator.stringToProxy(SinplePrinter:ws -h ${hostnane} -p 10000");
const printer = await Denp. PrinterPrx.checkedCast (proxy);
if(printer)

await printer.printString("Hello World!");
}
el se
{
$("#output").val ("Invalid proxy");

}

}

cat ch(ex)

{
$("#output").val (ex.toString());

}

finally

{
setState(State.ldle);

}

}

Copyright 2018, ZeroC, Inc.

https://doc.zeroc.com/pages/viewpage.action?pageId=18255203

const

{

Ice 3.7.1 Documentation

State =

Idle: O,
Busy: 1

}

function set State(newState)

{

swi t ch(newsSt at e)

{

}

case State.ldle:
{
/1 Hi de the progress indicator.
$("#progress"). hide();
$("body").renoveCd ass("wai ting");
/1 Enable the button
$("#print").remveC ass("disabl ed").click(printString);
br eak;
}
case State. Busy:
{
/1 Clear any previous error nessages.
$("#output").val ("");
/| Disable buttons.
$("#print").addd ass("di sabl ed").of f("click");
/1 Display the progress indicator and set the wait cursor.
$(" #progress").show);
$("body") . addd ass("wai ting");
br eak;

setState(State.ldle);

10D

Here are the notable aspects of this code:

1.

2.

The program begins by calling | ce. i ni ti al i ze to initialize the Ice run time. The calltoi ni ti al i ze returns an | ce. Conmuni cat or refe
rence, which is the main object in the Ice run time.

Next the program defines the asynchronous function pri nt St ri ng, which serves as the callback function for a Ul button press. The async
qualifier allows us to use the awai t keyword when making proxy invocations.

. The code uses a simple state machine to manage the Ul elements. Before making a remote invocation, the function enters the "busy" state

to update the Ul elements.

. The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with the string

"SinmplePrinter:ws -h hostname -p 10000", where host nane is the document location. Note that the string contains the object
identity and the port number that were used by the server. (Obviously, hard-coding object identities and port numbers into our applications is
a bad idea, but it will do for now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

. The proxy returned by st ri ngToPr oxy is of type | ce. Obj ect Pr x, which is at the root of the inheritance tree for interfaces. But to actually

talk to our printer, we need a proxy for a Deno: : Pri nt er interface, not an Obj ect interface. To do this, we need to do a down-cast by
calling Denp. Pri nt er Prx. checkedCast . A checked cast sends a message to the server, effectively asking "is this a proxy for a Deno: :
Pri nt er interface?" If so, the call returns a proxy of type Denp: : Pri nt er Pr x; otherwise, if the proxy denotes an interface of some other
type, the call returns nul | .

. The checkedCast function involves a remote invocation to the server, which means this function has asynchronous semantics and

therefore it returns a new promise object. We apply the awai t keyword to the promise to wait for the call to complete.

. If checkedCast returns a non-null value, we now have a live proxy in our address space and can call the pri nt St ri ng method, passing it

the time-honored " Hel | o Wor | d! " string. The server prints that string on its terminal. Again, pri nt St ri ng is a remote invocation, and it
returns a promise that we await.

. The fi nal | y block is executed after the t r y block has completed, whether or not it completes successfully, in order to reset the program's

state to "idle".

Here are some snippets from the corresponding HTML code:

Copyright 2018, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/IceGrid

Ice 3.7.1 Documentation

HTML

<script type="text/javascript" src="lce.js">
<script type="text/javascript" src="Printer.js">
<script type="text/javascript" src="Client.js">

<l-- U elenments -->
<section rol e="nmin" id="body">
<div class="row'>
<div class="large-12 medi um 12 col utms">
<fornmp
<div class="row'>
<div class="small-12 col ums">
Print String
</div>
</div>
<div class="row'>
<div class="small-12 col ums">
<textarea id="output" readonly></textarea>
</div>
</ div>
<div id="progress" class="row hide">
<div class="small-12 colums left">
<div class="inline left icon"></div>
<di v class="text">Sendi ng Request...</div>
</div>
</ div>
</ forne
</ div>
</div>
</ section>

The three scri pt elements load the Ice run time, the generated code, and the application code, respectively.

A similar example can be found inj s/ | ce/ mi ni nal inthe i ce- denos repository.

See Also

® Client-Side Slice-to-JavaScript Mapping
® |ceGrid

Copyright 2018, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Client-Side+Slice-to-JavaScript+Mapping
https://doc.zeroc.com/display/Ice37/IceGrid

	Writing an Ice Application with JavaScript

