
Ice 3.7.1 Documentation

1 Copyright 2018, ZeroC, Inc.

Writing an Ice Application with JavaScript
This page shows how to create an Ice client application with JavaScript.

On this page:

Compiling a Slice Definition for JavaScript
Using Ice with NodeJS

Writing a NodeJS Client
Running the NodeJS Client

Using Ice in a Browser

Compiling a Slice Definition for JavaScript
The first step in creating our JavaScript application is to compile our to generate JavaScript proxies. You can compile the definition as Slice definition
follows:

slice2js Printer.ice

The compiler produces a single source file, , from this definition. The exact contents of the source file do not concern us for slice2js Printer.js
now — it contains the generated code that corresponds to the interface we defined in .Printer Printer.ice

Using Ice with NodeJS
The language mapping is the same whether you're writing applications for NodeJS or a browser, but the code style is different enough that we
describe the two platforms separately.

Writing a NodeJS Client

The client code, in , is shown below in full:Client.js

https://doc.zeroc.com/display/Ice37/Writing+a+Slice+File

Ice 3.7.1 Documentation

2 Copyright 2018, ZeroC, Inc.

1.

2.

3.

4.

5.

6.

JavaScript

const Ice = require("ice").Ice;
const Demo = require("./generated/Printer").Demo;

(async function()
{
 let communicator;
 try
 {
 communicator = Ice.initialize();
 const base = communicator.stringToProxy("SimplePrinter:default -p 10000");
 const printer = await Demo.PrinterPrx.checkedCast(base);
 if(printer)
 {
 await printer.printString("Hello World!");
 }
 else
 {
 console.log("Invalid proxy");
 }
 }
 catch(ex)
 {
 console.log(ex.toString());
 process.exitCode = 1;
 }
 finally
 {
 if(communicator)
 {
 await communicator.destroy();
 }
 }
}());

The program begins with statements that assign modules from the Ice run time and the generated code to convenient local variables. (require Thes
e statements are necessary for use with NodeJS. Browser applications would omit these statements and load the modules a different way.)

The program then defines an asynchronous function, which allows us to use the keyword in our code when making proxy invocations. Here await
are the notable aspects of this code:

The body of the function begins by calling to initialize the Ice run time. The call to returns an Ice.initialize initialize Ice.
 reference, which is the main object in the Ice run time.Communicator

The next step is to obtain a proxy for the remote printer. We create a proxy by calling on the communicator, with the string stringToProxy
. Note that the string contains the object identity and the port number that were used by the "SimplePrinter:default -p 10000"

server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for now; we will see more
architecturally sound ways of doing this when we discuss .)IceGrid
The proxy returned by is of type , which is at the root of the inheritance tree for interfaces. But to actually stringToProxy Ice.ObjectPrx
talk to our printer, we need a proxy for a interface, not an interface. To do this, we need to do a down-cast by Demo::Printer Object
calling . A checked cast sends a message to the server, effectively asking "is this a proxy for a Demo.PrinterPrx.checkedCast Demo::

 interface?" If so, the call returns a proxy of type ; otherwise, if the proxy denotes an interface of some other Printer Demo::PrinterPrx
type, the call returns .null
The function involves a remote invocation to the server, which means this function has asynchronous semantics and checkedCast
therefore it returns a new promise object. We apply the keyword to the promise to wait for the call to complete.await
If returns a non-null value, we now have a live proxy in our address space and can call the method, passing it checkedCast printString

the time-honored string. The server prints that string on its terminal. Again, is a remote invocation, and it "Hello World!" printString

returns a promise that we await.
The block is executed after the block has completed, whether or not it completes successfully. If we successfully created a finally try
communicator in the block, we destroy it here. Doing this is essential in order to correctly finalize the Ice run time: the program call try must

 on any communicator it has created; otherwise, undefined behavior results. The function has asynchronous semantics, destroy destroy
so we await it to ensure no subsequent code is executed until completes.destroy

Running the NodeJS Client

https://doc.zeroc.com/display/Ice37/JavaScript+Mapping+for+Modules
https://doc.zeroc.com/display/Ice37/IceGrid

Ice 3.7.1 Documentation

3 Copyright 2018, ZeroC, Inc.

The server must be started before the client. Since Ice for JavaScript does not currently include a complete server-side implementation, we need to
use a server from another language mapping. In this case, we will use the :C++ server

server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

node Client.js

The client runs and exits without producing any output; however, in the server window, we see the that is produced by the printer. "Hello World!"
To get rid of the server, we interrupt it on the command line.

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

Ice::ConnectionRefusedException
 ice_cause: "Error: connect ECONNREFUSED"
 error: "ECONNREFUSED"

Note that, to successfully run the client, NodeJS must be able to locate the Ice for JavaScript modules. See the Ice for JavaScript installation
instructions for more information.

Using Ice in a Browser
The client code, in , is shown below in full:Client.js

JavaScript

(function(){

const communicator = Ice.initialize();

async function printString()
{
 try
 {
 setState(State.Busy);

 const hostname = document.location.hostname || "127.0.0.1";
 const proxy = communicator.stringToProxy(`SimplePrinter:ws -h ${hostname} -p 10000`);

 const printer = await Demo.PrinterPrx.checkedCast(proxy);
 if(printer)
 {
 await printer.printString("Hello World!");
 }
 else
 {
 $("#output").val("Invalid proxy");
 }
 }
 catch(ex)
 {
 $("#output").val(ex.toString());
 }
 finally
 {
 setState(State.Idle);
 }
}

https://doc.zeroc.com/pages/viewpage.action?pageId=18255203

Ice 3.7.1 Documentation

4 Copyright 2018, ZeroC, Inc.

1.

2.

3.

4.

5.

6.

7.

8.

const State =
{
 Idle: 0,
 Busy: 1
};

function setState(newState)
{
 switch(newState)
 {
 case State.Idle:
 {
 // Hide the progress indicator.
 $("#progress").hide();
 $("body").removeClass("waiting");
 // Enable the button
 $("#print").removeClass("disabled").click(printString);
 break;
 }
 case State.Busy:
 {
 // Clear any previous error messages.
 $("#output").val("");
 // Disable buttons.
 $("#print").addClass("disabled").off("click");
 // Display the progress indicator and set the wait cursor.
 $("#progress").show();
 $("body").addClass("waiting");
 break;
 }
 }
}

setState(State.Idle);
}());

Here are the notable aspects of this code:

The program begins by calling to initialize the Ice run time. The call to returns an refeIce.initialize initialize Ice.Communicator
rence, which is the main object in the Ice run time.
Next the program defines the asynchronous function , which serves as the callback function for a UI button press. The printString async
qualifier allows us to use the keyword when making proxy invocations.await
The code uses a simple state machine to manage the UI elements. Before making a remote invocation, the function enters the "busy" state
to update the UI elements.
The next step is to obtain a proxy for the remote printer. We create a proxy by calling on the communicator, with the string stringToProxy

, where is the document location. Note that the string contains the object "SimplePrinter:ws -h -p 10000"hostname hostname
identity and the port number that were used by the server. (Obviously, hard-coding object identities and port numbers into our applications is
a bad idea, but it will do for now; we will see more architecturally sound ways of doing this when we discuss .)IceGrid
The proxy returned by is of type , which is at the root of the inheritance tree for interfaces. But to actually stringToProxy Ice.ObjectPrx
talk to our printer, we need a proxy for a interface, not an interface. To do this, we need to do a down-cast by Demo::Printer Object
calling . A checked cast sends a message to the server, effectively asking "is this a proxy for a Demo.PrinterPrx.checkedCast Demo::

 interface?" If so, the call returns a proxy of type ; otherwise, if the proxy denotes an interface of some other Printer Demo::PrinterPrx
type, the call returns .null
The function involves a remote invocation to the server, which means this function has asynchronous semantics and checkedCast
therefore it returns a new promise object. We apply the keyword to the promise to wait for the call to complete.await
If returns a non-null value, we now have a live proxy in our address space and can call the method, passing it checkedCast printString
the time-honored string. The server prints that string on its terminal. Again, is a remote invocation, and it "Hello World!" printString
returns a promise that we await.
The block is executed after the block has completed, whether or not it completes successfully, in order to reset the program's finally try
state to "idle".

Here are some snippets from the corresponding HTML code:

https://doc.zeroc.com/display/Ice37/IceGrid

Ice 3.7.1 Documentation

5 Copyright 2018, ZeroC, Inc.

HTML

<script type="text/javascript" src="Ice.js">
<script type="text/javascript" src="Printer.js">
<script type="text/javascript" src="Client.js">
...
<!-- UI elements -->
<section role="main" id="body">
 <div class="row">
 <div class="large-12 medium-12 columns">
 <form>
 <div class="row">
 <div class="small-12 columns">
 Print String
 </div>
 </div>
 <div class="row">
 <div class="small-12 columns">
 <textarea id="output" readonly></textarea>
 </div>
 </div>
 <div id="progress" class="row hide">
 <div class="small-12 columns left">
 <div class="inline left icon"></div>
 <div class="text">Sending Request...</div>
 </div>
 </div>
 </form>
 </div>
 </div>
</section>

The three elements load the Ice run time, the generated code, and the application code, respectively.script

A similar example can be found in in the repository.js/Ice/minimal ice-demos

See Also

Client-Side Slice-to-JavaScript Mapping
IceGrid

https://doc.zeroc.com/display/Ice37/Client-Side+Slice-to-JavaScript+Mapping
https://doc.zeroc.com/display/Ice37/IceGrid

	Writing an Ice Application with JavaScript

