
Ice 3.7.1 Documentation

1 Copyright 2018, ZeroC, Inc.

C++11 Mapping for Interfaces
The mapping of Slice revolves around the idea that, to invoke a remote operation, you call a member function on a local class instance that interfaces
is a for the remote object. This makes the mapping easy and intuitive to use because making a remote procedure call is no different from proxy
making a local procedure call (apart from error semantics).

On this page:

Proxy Classes and Proxy Handles
Inheritance from Ice::Object
Interface Inheritance
Receiving Proxies

Down-casting Proxies with checkedCast and uncheckedCast
Checked cast
Unchecked cast

Typed Proxy Factory Methods in C++
Object Identity and Proxy Comparison in C++

Proxy Classes and Proxy Handles
On the client side, a Slice interface maps to a class with member functions that correspond to the operations on that interface. Consider the following
simple interface:

Slice

module M
{
 interface Simple
 {
 void op();
 }
}

The Slice compiler generates the following definitions for use by the client:

C++

namespace M
{
 class SimplePrx : public virtual Ice::ObjectPrx
 {
 public:
 void op(const Ice::Context& = Ice::noExplicitContext);
 ...
 static const std::string& ice_staticId();
 };
}

Your client code interacts directly with the , in the example above. More generally, the generated proxy class for an proxy class M::SimplePrx
interface in module is the C++ proxy class .M M::<interface-name>Prx

In the client's address space, an instance of the proxy class is the local ambassador for a remote instance of the interface in a server and is Simple
known as a . All the details about the server-side object, such as its address, what protocol to use, and its object identity are proxy class instance
encapsulated in that instance.

Inheritance from Ice::Object

All generated proxy classes inherit directly or indirectly from the proxy class, reflecting the fact that all Slice interfaces implicitly Ice::ObjectPrx
inherit from .Ice::Object

https://doc.zeroc.com/display/Ice37/Interfaces%2C+Operations%2C+and+Exceptions
https://doc.zeroc.com/display/Ice37/Proxies+for+Ice+Objects

Ice 3.7.1 Documentation

2 Copyright 2018, ZeroC, Inc.

Interface Inheritance

Inheritance relationships among Slice interfaces are maintained in the generated C++ classes. For example:

Slice

module M
{
 interface A { ... }
 interface B { ... }
 interface C extends A, B { ... }
}

The generated code for reflects the inheritance hierarchy:CPrx

C++

namespace M
{
 class CPrx : public virtual APrx, public virtual BPrx
 {
 ...
 };
}

Given a proxy for , a client can invoke any operation defined for interface , as well as any operation inherited from 's base interfaces.C C C

Receiving Proxies

Client-side application code never manipulates proxy class instances directly. In fact, you are not allowed to instantiate a proxy class directly. The
following code will not compile:

C++

M::SimplePrx s; // Compile-time error!

Proxy instances are always instantiated on behalf of the client by the Ice run time, so client code never has any need to instantiate a proxy directly.
When the client receives a proxy from the run time, it is given .std::shared_ptr<proxy class>

The client accesses the proxy via this ; the takes care of forwarding operation invocations to its underlying proxy, as well shared_ptr shared_ptr
as reference-counting the proxy. This means that no memory-management issues can arise: deallocation of a proxy is automatic and happens once
the last to the proxy disappears (goes out of scope).shared_ptr

Down-casting Proxies with and checkedCast uncheckedCast
The Ice namespaces provides two template functions, and , modeled after :checkedCast uncheckedCast std::dynamic_pointer_cast

Ice 3.7.1 Documentation

3 Copyright 2018, ZeroC, Inc.

C++

namespace Ice
{
 // Modeled after std::dynamic_pointer_cast. P is the derived proxy class, for example DerivedPrx.
 template<typename P, typename T, ...>
 std::shared_ptr<P> checkedCast(const std::shared_ptr<T>& b, const Ice::Context& context = Ice::
noExplicitContext)
 {
 ...
 }

 template<typename P, typename T, ...> std::shared_ptr<P> uncheckedCast(const std::shared_ptr<T>& b)
 {
 ...
 }
}

These functions allow you to down-cast a proxy to a more derived proxy type.

Checked cast

A checked cast has the same function for proxies as a C++ has for pointers: it allows you to assign a base proxy to a derived proxy. dynamic_cast
If the type of the base proxy's target object is compatible with the derived proxy's static type, the assignment succeeds and, after the assignment, the
derived proxy denotes the same remote object as the base proxy. Otherwise, if the type of the base proxy's target object is incompatible with the
derived proxy's static type, the derived proxy is set to null. Here is an example to illustrate this:

C++

std::shared_ptr<BasePrx> base = ...; // Initialize base proxy
auto derived = Ice::checkedCast<DerivedPrx>(base); // returns a shared_ptr<DerivedPrx>
if(derived)
{
 // Base's target object has run-time type Derived,
 // use derived...
}
else
{
 // Base has some other, unrelated type
}

The expression tests whether points at a remote object of type (or an object with a type that checkedCast<DerivedPrx>(base) base Derived
is derived from). If so, the cast succeeds and is set to point at the same object as . Otherwise, the cast fails and is Derived derived base derived
set to null.

Sending a remote message is necessary because, as a rule, there is no way for the client to find out what the actual run-time type of a remote Ice
object is without confirmation from the server. (For example, the server may replace the implementation of the object for an existing proxy with a
more derived one.) This means that you have to be prepared for a to fail. For example, if the server is not running, you will receive a checkedCast C

 if the server is running, but the object denoted by the proxy no longer exists, you will receive an onnectFailedException; ObjectNotExistExc
.eption

Unchecked cast

In some cases, it is known that an object supports a more derived interface than the static type of its proxy. For such cases, you can use an
unchecked down-cast. An provides a down-cast consulting the server as to the actual run-time type of the object, for uncheckedCast without
example:

A always results in a remote message, , to the server. The message effectively asks the server "is the object checkedCast ice_isA
denoted by this proxy of type Derived?". When ice_isA returns true, checkedCast manufactures and returns a new proxy instance.

Ice 3.7.1 Documentation

4 Copyright 2018, ZeroC, Inc.

C++

std::shared_ptr<BasePrx> base = ...; // Initialize to point at a Derived
auto derived = Ice::uncheckedCast<DerivedPrx>(base);
// Use derived...

You should use an only if you are certain that target object indeed supports the more derived type: an , as the uncheckedCast uncheckedCast
name implies, is not checked in any way; it does not contact the object in the server and never fails. If you use the proxy resulting from an incorrect un

 to invoke an operation, the behavior is undefined. Most likely, you will receive an , but, depending checkedCast OperationNotExistException
on the circumstances, the Ice run time may also report an exception indicating that unmarshaling has failed, or even silently return garbage results.

Despite its dangers, is useful because it avoids the cost of sending a message to the server. And, particularly during , it uncheckedCast initialization
is common to receive a proxy of static type , but with a known run-time type. In such cases, an saves the Ice::ObjectPrx uncheckedCast
overhead of sending a remote message.

Typed Proxy Factory Methods in C++
The base proxy class supports a variety of . Since proxies are immutable, each of these "factory ObjectPrx methods for customizing a proxy
methods" returns a copy of the original proxy that contains the desired modification. For example, you can obtain a proxy configured with a ten
second invocation timeout as shown below:

C++11

std::shared_ptr<Ice::ObjectPrx> proxy = communicator->stringToProxy(...);
proxy = proxy->ice_invocationTimeout(10000);

A factory method returns a new proxy object if the requested modification differs from the current proxy, otherwise it returns the current proxy. With
few exceptions, the corresponding C++ factory member functions return a proxy of the same type as the current proxy, therefore it is generally not
necessary to down-cast after calling such a factory. The example below demonstrates these semantics:

C++

auto base = communicator->stringToProxy(...);
auto hello = checkedCast<HelloPrx>(base);
hello = hello->ice_invocationTimeout(10000); // Type is preserved
hello->sayHello();

The only exceptions are the factory member functions and . Calls to either of these functions may produce a proxy for ice_facet ice_identity
an object of an unrelated type, therefore they return a base proxy that you must subsequently down-cast to an appropriate type.

Object Identity and Proxy Comparison in C++
You can compare proxies for equality. By default, proxy comparison compares all aspects of a proxy, including the object identity, facet name,
addressing information, and all the proxy settings; two proxies compare equal only if they are identical in all respects. The mapping provides helper

 to simplify the comparison of proxies stored in values.functions shared_ptr

Note however that the more common use case is determining whether two proxies denote the same Ice object, in which case you should only be
comparing their object identities. To compare the object identities of two proxies, you can use helper functions and classes in the namespace:Ice

Calling unc on a proxy that is already of the desired proxy type returns immediately that proxy. Otherwise, unc heckedCast heckedCast
creates a new instance of the desired proxy class.

https://doc.zeroc.com/pages/viewpage.action?pageId=18255365
https://doc.zeroc.com/display/Ice37/Proxy+Methods
https://doc.zeroc.com/pages/viewpage.action?pageId=18261367
https://doc.zeroc.com/pages/viewpage.action?pageId=18261367

Ice 3.7.1 Documentation

5 Copyright 2018, ZeroC, Inc.

C++

namespace Ice
{
 bool proxyIdentityLess(const std::shared_ptr<ObjectPrx>&, const std::shared_ptr<ObjectPrx>&);
 bool proxyIdentityEqual(const std::shared_ptr<ObjectPrx>&, const std::shared_ptr<ObjectPrx>&);
 bool proxyIdentityAndFacetLess(const std::shared_ptr<ObjectPrx>&, const std::shared_ptr<ObjectPrx>&);
 bool proxyIdentityAndFacetEqual(const std::shared_ptr<ObjectPrx>&, const std::shared_ptr<ObjectPrx>&);

 struct ProxyIdentityLess : std::binary_function<bool, std::shared_ptr<ObjectPrx>&, std::
shared_ptr<ObjectPrx>&>
 {
 bool operator()(const std::shared_ptr<ObjectPrx>& lhs, const std::shared_ptr<ObjectPrx>& rhs) const
 {
 return proxyIdentityLess(lhs, rhs);
 }
 };

 struct ProxyIdentityEqual ...
 struct ProxyIdentityAndFacetLess ...
 struct ProxyIdentityAndFacetEqual ...
}

The function returns true if the object identities embedded in two proxies are the same and ignores other information in the proxyIdentityEqual
proxies, such as facet and transport information. To include the in the comparison, use instead.facet name proxyIdentityAndFacetEqual

The function establishes a total ordering on proxies. It is provided mainly so you can use object identity comparison with proxyIdentityLess
sorted containers. (The function uses as the major ordering criterion, and as the minor ordering criterion.) The name category proxyIdentityAnd

 function behaves similarly to , except that it also compares the facet names of the proxies when their identities FacetLess proxyIdentityLess
are equal.

See Also

Interfaces, Operations, and Exceptions
Proxies for Ice Objects
C++11 Mapping for Operations
Example of a File System Client in C++11
Versioning

https://doc.zeroc.com/display/Ice37/Versioning
https://doc.zeroc.com/display/Ice37/Interfaces%2C+Operations%2C+and+Exceptions
https://doc.zeroc.com/display/Ice37/Proxies+for+Ice+Objects
https://doc.zeroc.com/pages/viewpage.action?pageId=18255297
https://doc.zeroc.com/pages/viewpage.action?pageId=18255304
https://doc.zeroc.com/display/Ice37/Versioning

	C++11 Mapping for Interfaces

