Ice 3.7.1 Documentation

Asynchronous Method Invocation (AMI) in C++11

Asynchronous Method Invocation (AMI) is the term used to describe the client-side support for the asynchronous programming model. AMI supports
both oneway and twoway requests, but unlike their synchronous counterparts, AMI requests never block the calling thread. When a client issues an

AMI request, the Ice run time hands the message off to the local transport buffer or, if the buffer is currently full, queues the request for later delivery.
The application can then continue its activities and poll or wait for completion of the invocation, or receive a callback when the invocation completes.

AMI is transparent to the server: there is no way for the server to tell whether a client sent a request synchronously or asynchronously.

On this page:

® Callback and Future-Based APIs

© Future-Based Async Function

© Callback-Based Async Function
Asynchronous Exception Semantics
Asynchronous Oneway Invocations
Canceling an Asynchronous Invocation
Polling for Completion
Flow Control
Asynchronous Batch Requests

Callback and Future-Based APIs

Each Slice operation is mapped to two <oper at i on- nanme>Async functions on the corresponding proxy class:

® afuture-based function, that returns a st d: : f ut ur e; this future object delivers the operation's return value and out parameters
® a callback-based function, that take callbacks as st d: : f unct i on parameters; this is the full featured and somewhat lower-level function

Consider the following simple Slice definition:

Slice

nodul e Denp

{

interface Enpl oyees

{
string getName(int nunber);

}

Besides the synchronous proxy functions, sl i ce2cpp generates the following asynchronous proxy functions:

C++

/1 Future-based function
/1 with the P = std::promise (the default), it's equivalent to:

/'l std::future<std::string> get NanmeAsync(int nunber, const |ce::Context& context = |ce::noExplicitContext);
/1

t enpl at e<t enpl at e<t ypenane> class P = std:: promi se>

aut o get NanmeAsync(int nunber, const |ce::Context& context = |ce::noExplicitContext)

-> decl type(std::declval <P<std::string>>().get_future());

/1 Call back-based function

/1

std:: function<void()>

get NaneAsync(i nt nunber,
std::function<void(std::string)> response,
std::function<void(std::exception_ptr)> exception = nullptr,
std:: function<voi d(bool)> sent = nullptr,
const Ice::Context& context = |ce::noExplicitContext);

Copyright 2018, ZeroC, Inc.

Ice 3.7.1 Documentation

Future-Based Async Function

The future-based async function returns a st d: : f ut ur e object. It can also return a custom future object if you specify the associated promise
template. For example:

C++

auto e = ... // get an Enpl oyees proxy

auto futl = e->get NaneAsync(99); // futl is a plain std::future, created froma std:: prom se

cout << "Enployee nane is: " << futl.get() << endl; // futl.get() blocks until the result is available

auto fut2 = e->get NaneAsync<std::experinmental::promse>(98); // fut2 is a std::experinmental::future,
created fromthe provided prom se tenplate

The future's result depends on the operation's parameters:

® when the operation has no return value or out parameter, the result type is voi d.

* when the operation has a return value, or no return value but a single out parameter, the result is this return value or out parameter.

® when the operation has a return value and one or more out parameters (or no return value and two or more out parameters), the result is a
generated struct <oper at i on- name>Resul t (with the first letter capitalized) in the mapped interface class (or in the main mapped class
for a class with operations). This struct has public data members named after the operation parameters; the data member for the return
value is named r et ur nVal ue.

For example, if we add a new out parameter to get Narre:

Slice

nodul e Deno

{

interface Enpl oyees

{
}

string getName(int nunber, out string email);

The Slice to C++ compiler will generate:

C++

class Enployees : public virtual Ice:: oject

{
public:
struct Cet NameResul t
{
std::string returnVal ue;
std::string email;
b
b
cl ass Enpl oyeesPrx : public virtual Ice::ObjectPrx
{
public:
tenpl at e<t enpl at e<t ypenane> cl ass P = std:: proni se>
aut o get NameAsync(int nunber, const lce::Context& ctx = Ice::noExplicitContext)
-> decl type(std::decl val <P<Enpl oyees: Get NaneResul t >>() . get _future());
}

Copyright 2018, ZeroC, Inc.

Ice 3.7.1 Documentation

You would typically use aut o to avoid typing the name of this Resul t struct:

C++11

auto e = ... // get an Enpl oyees proxy
auto fut = e->get NaneAsync(99); // get future<Enployees:: Get NameResult>

Callback-Based Async Function

With the callback-based async function, you must provide all the mandatory in-parameters of the operation, followed by a response callback. You can
then optionally provide an exception callback and a sent callback.

These callbacks are described below:

® response callback
The Ice run time calls the response callback to deliver asynchronously the response from a two-way invocation that completes successfully.
The signature for this response callback is st d: : functi on<voi d(return-type, first-out-type, second-out-type...)>. The
response callback for an operation with no return or out parameter has no parameters. Otherwise, all the parameters to this callback
function are passed by value, to allow your callback to adopt (move) the memory allocated by the Ice run time (the caller).

® exception callback
The Ice run time calls the exception callback (when provided) to deliver asynchronously the result of an invocation that completes with an
error. This exception callback accepts a single st d: : excepti on_pt r parameter, passed by value, that can hold any type of exception.

® sent callback
When you call an Async function the Ice run time attempts to write the corresponding request to the client-side transport. If the transport
cannot accept the request, the Ice run time queues the request for later transmission. The Ice run time calls the sent callback (if provided) to
notify you that the request has been accepted by the transport. sent accepts a single bool parameter, set to t r ue when the request is
sent synchronously, and f al se otherwise.

For example:
C++
auto e = ... // get an Enpl oyees proxy
e- >get NanmeAsync(99,
[1(string nane) { cout << "Enployee nane is: " << name << endl; },
[1(exception_ptr eptr)
{
try
{
rethrow_exception(eptr);
}
catch(const std::exception& ex)
{
cerr << "Request failed: " << ex.what() << endl;
}

1)

The Ice run time calls these callbacks using a thread from the communicator's client thread pool, with one exception: the sent callback is called by the
thread making the invocation when the request is sent synchronously.

Asynchronous Exception Semantics

If an invocation raises an exception, the exception is reported by the exception callback or by the future, even if the actual error condition for the
exception was encountered during the call to the Async function ("on the way out"). The advantage of this behavior is that all exception handling is
located in the same place (instead of being present twice, once where you call the Async function, and again where you retrieve the result) .

There are two exceptions to this rule:

Copyright 2018, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Thread+Pools

Ice 3.7.1 Documentation

¢ if you destroy the communicator and then make an asynchronous invocation, the Async function throws Conmuni cat or Dest r oyedExcep
tion.
This is necessary because, once the communicator is destroyed, its client thread pool is no longer available.

® acallto an Async function can throw TwowayOnl yExcept i on. An Async function throws this exception if you call an operation that has a
return value or out-parameters on a oneway proxy.

Asynchronous Oneway Invocations

You can invoke operations via oneway proxies asynchronously, provided the operation has voi d return type, does not have any out-parameters, and
does not raise user exceptions. If you call an Async function on a oneway proxy for an operation that returns values or raises a user exception, the As
ync function throws Twoway Onl yExcept i on.

An async oneway invocation does not call the response callback with the callback API; you use the sent callback to make sure the invocation was
successfully sent. With the future-based API, the returned future is a f ut ur e<voi d> and this future is made ready when the invocation is sent.

Canceling an Asynchronous Invocation

The Async function with callback parameters returns a cancel function-object (a st d: : f uncti on<voi d() >). You can use this function-object to
cancel the invocation, for example:

C++
auto e = ... // get an Enpl oyees proxy
auto cancel = e->get NaneAsync(99, [](string nane) { cout << "Enployee nane is: " << nane << endl; });

cancel (); // no longer interested in this nane

Calling this cancel function-object prevents a queued invocation from being sent or, if the invocation has already been sent, ignores a reply if the
server sends one. This cancelation is purely local and has no effect on the server.

Canceling an invocation that has already completed has no effect. Otherwise, a canceled invocation is considered to be completed, meaning the
exception callback (if provided) receives an | ce: : | nvocat i onCancel edExcepti on.

Polling for Completion

The future-based Async function allow you to poll for call completion. Polling is useful in a variety of cases. As an example, consider the following
simple interface to transfer files from client to server:

Slice

interface FileTransfer

{
}

voi d send(int offset, ByteSeq bytes);

The client repeatedly calls send to send a chunk of the file, indicating at which offset in the file the chunk belongs. A naive way to transmit a file
would be along the following lines:

C++

FileHandle file = open(...);
shared_ptr<Fil eTransferPrx> ft = ...;
const int chunkSize = ...;

int offset = 0;
while(!file.eof())

{
Byt eSeq bs;

Copyright 2018, ZeroC, Inc.

Ice 3.7.1 Documentation

bs = file.read(chunkSize); // Read a chunk
ft->send(of fset, bs); /1 Send the chunk
of fset += bs.size();

This works, but not very well: because the client makes synchronous calls, it writes each chunk on the wire and then waits for the server to receive
the data, process it, and return a reply before writing the next chunk. This means that both client and server spend much of their time doing nothing
— the client does nothing while the server processes the data, and the server does nothing while it waits for the client to send the next chunk.

Using asynchronous calls, we can improve on this considerably:

C++

FileHandl e file = open(...);
shared_ptr<FileTransferPrx> ft = ...;
const int chunkSize = ...;

int offset = 0;

deque<future<voi d>> results;
const int nunmRequests = 5;

while(!file.eof())
{
Byt eSeq bs;
bs = file.read(chunkSize);

/1 Send up to nunmRequests + 1 chunks asynchronously.
auto fut = ft->sendAsync(offset, bs);
of fset += bs.size();

resul ts. push_back(std::nove(fut));

/1 Once there are nore than nunRequests, wait for the |east
/1 recent one to conplete.
whil e(results.size() > nunRequests)
{
results.front().get();
results. pop_front();

}

/1 Wait for any remaining requests to conplete.
while(!results.empty())
{

results.front().get();

results. pop_front();

With this code, the client sends up to nunRequests + 1 chunks before it waits for the least recent one of these requests to complete. In other
words, the client sends the next request without waiting for the preceding request to complete, up to the limit set by nunRequest s. In effect, this
allows the client to "keep the pipe to the server full of data": the client keeps sending data, so both client and server continuously do work.

Obviously, the correct chunk size and value of nunRequest s depend on the bandwidth of the network as well as the amount of time taken by the
server to process each request. However, with a little testing, you can quickly zoom in on the point where making the requests larger or queuing more
requests no longer improves performance. With this technique, you can realize the full bandwidth of the link to within a percent or two of the
theoretical bandwidth limit of a native socket connection.

Flow Control

Asynchronous method invocations never block the thread that calls the Async function : the Ice run time checks to see whether it can write the
request to the local transport. If it can, it does so immediately in the caller's thread. Alternatively, if the local transport does not have sufficient buffer
space to accept the request, the Ice run time queues the request internally for later transmission in the background.

Copyright 2018, ZeroC, Inc.

Ice 3.7.1 Documentation

This creates a potential problem: if a client sends many asynchronous requests at the time the server is too busy to keep up with them, the requests
pile up in the client-side run time until, eventually, the client runs out of memory.

The callback API provides a way for you to implement flow control by counting the number of requests that are queued so, if that number exceeds
some threshold, the client stops invoking more operations until some of the queued operations have drained out of the local transport.

For example:

C++

auto e = ...; // get an Enpl oyees proxy

e- >get NameAsync(99,

[1(string nane) { ... handle nane ... },
[1(exception_ptr ex) { ... handle exception ... },
[T(bool) { ... increase sent counter ... });

Asynchronous Batch Requests

You can invoke operations via batch oneway proxies asynchronously, provided the operation has voi d return type, does not have any out-
parameters, and does not raise user exceptions. If you call an asynchronous proxy method on a batch oneway proxy for an operation that returns
values or raises a user exception, the proxy method throws Twoway Onl yExcept i on.

A batch oneway invocation never calls the response or sent callbacks with the callback API. With the future-based API, the returned future for a batch
oneway invocation is always ready and indicates the successful queuing of the batch invocation. The future completes exceptionally if an error occurs
before the request is queued.

Applications that send batched requests can either flush a batch explicitly or allow the Ice run time to flush automatically. The proxy method i ce_fl u
shBat chRequest s performs an immediate flush using the synchronous invocation model and may block the calling thread until the entire message
can be sent. Ice also provides Async versions of this function so you can flush batch requests asynchronously:

C++

/1 Future-based function

/1 with the P = std::promise (the default), it's equivalent to:

/] std::future<void> ice_flushBatchRequestsAsync();

/1

t enpl at e<t enpl at e<t ypenane> class P = std:: promi se>

aut o ice_flushBat chRequest sAsync() -> decltype(std::declval <P<voi d>>().get_future());

/'l Call back-based function

11

std:: function<void()>

i ce_flushBat chRequest sAsync(std:: function<voi d(std::exception_ptr)> ex, std::function<void(bool)> sent =
null ptr);

The bool value returned by the future-based function indicates whether the flush was performed synchronously (return value is t r ue) or
asynchronously (return value is f al se).

Similar f 1 ushBat chRequest sAsync functions are also available on Communi cat or and Connect i on:

C++

/'l Future-based function

/Il with the P = std::promise (the default), it's equivalent to:

/] std::future<voi d> flushBatchRequest sAsync(Ice:: ConpressBatch conpress);

/1

t enpl at e<t enpl at e<t ypenane> class P = std:: prom se>

aut o flushBat chRequest sAsync(| ce:: ConpressBatch conpress) -> decltype(std:: decl val <P<voi d>>().get_future())

/] Call back-based function

Copyright 2018, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Batched+Invocations

Ice 3.7.1 Documentation

/1

std:: function<void()>

fl ushBat chRequest sAsync(| ce: : ConpressBat ch conpress,
std::function<void(std::exception_ptr)> exception,
std:: function<void(bool)> sent = nullptr);

@ As described on the Batched Invocations page, f | ushBat chRequest s on Communi cat or and Connect i on flushes only requests
made with fixed proxies.

See Also
® Request Contexts

® Batched Invocations
® Collocated Invocation and Dispatch

Copyright 2018, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Request+Contexts
https://doc.zeroc.com/display/Ice37/Batched+Invocations
https://doc.zeroc.com/display/Ice37/Collocated+Invocation+and+Dispatch
https://doc.zeroc.com/display/Ice37/Batched+Invocations

	Asynchronous Method Invocation (AMI) in C++11

