
Ice 3.7.1 Documentation

1 Copyright 2018, ZeroC, Inc.

Java Mapping for Interfaces
The mapping of Slice revolves around the idea that, to invoke a remote operation, you call a member function on a local class instance that interfaces
is a for the remote object. This makes the mapping easy and intuitive to use because making a remote procedure call is no different from proxy
making a local procedure call (apart from error semantics).

On this page:

Java Classes Generated for an Interface
Proxy Interfaces
Interface Inheritance
The ObjectPrx Interface
Proxy Helper Methods
Using Proxy Methods
Object Identity and Proxy Comparison
Deserializing Proxies

Java Classes Generated for an Interface
The compiler generates three source files for each Slice interface. In general, for an interface , the following source files are < >interface-name
created by the compiler:

< >.javainterface-name
This source file declares the Java interface, which is used in the .< >interface-name server-side mapping

< >Prx.javainterface-name
This source file defines the .proxy interface < >Prxinterface-name

_< >PrxI.javainterface-name
This source file defines an implementation class for the interface's proxy. Applications should not use this type.

Proxy Interfaces
On the client side, a Slice interface maps to a Java interface with methods that correspond to the operations on that interface. Consider the following
simple interface:

Slice

interface Simple
{
 void op();
}

The Slice compiler generates the following definition for use by the client:

Java

public interface SimplePrx extends ObjectPrx
{
 void op();
 void op(java.util.Map<String, String> context);
}

As you can see, the compiler generates a . In general, the generated name is .proxy interface SimplePrx < >Prxinterface-name

In the client's address space, an instance of is the local ambassador for a remote instance of the interface in a server and is SimplePrx Simple
known as a proxy instance. All the details about the server-side object, such as its address, what protocol to use, and its object identity are
encapsulated in that instance.

Note that inherits from . This reflects the fact that all Ice interfaces implicitly inherit from .SimplePrx ObjectPrx Ice::Object

https://doc.zeroc.com/display/Ice37/Interfaces%2C+Operations%2C+and+Exceptions
https://doc.zeroc.com/display/Ice37/Proxies+for+Ice+Objects
https://doc.zeroc.com/display/Ice37/Server-Side+Java+Mapping+for+Interfaces

Ice 3.7.1 Documentation

2 Copyright 2018, ZeroC, Inc.

For each operation in the interface, the proxy interface has a method of the same name. For the preceding example, we find that the operation op
has been mapped to the method . Also note that is overloaded: the second version of has a parameter of type op op op context java.util.

. This parameter is for use by the Ice run time to store information about how to deliver a request. You normally do not need Map<String, String>
to use it. (We examine the parameter in detail in . The parameter is also used by .)context Request Contexts IceStorm

Because all the types are interfaces, you cannot instantiate an object of such a type. Instead, proxy instances are always < >Prxinterface-name
instantiated on behalf of the client by the Ice run time, so client code never has any need to instantiate a proxy directly. The proxy references handed
out by the Ice run time are always of type ; the concrete implementation of the interface is part of the Ice run time and does < >Prxinterface-name
not concern application code.

A value of denotes the null proxy. The null proxy is a dedicated value that indicates that a proxy points "nowhere" (denotes no object).null

Interface Inheritance
Inheritance relationships among Slice interfaces are maintained in the generated Java interfaces. For example:

Slice

interface A { ... }
interface B { ... }
interface C extends A, B { ... }

The generated code for reflects the inheritance hierarchy:CPrx

Java

public interface CPrx extends APrx, BPrx
{
 ...
}

Given a proxy for , a client can invoke any operation defined for interface , as well as any operation inherited from 's base interfaces.C C C

The InterfaceObjectPrx
All Ice objects have as the ultimate ancestor type, so all proxies inherit from . provides a number of methods:Object ObjectPrx ObjectPrx

Java

public interface ObjectPrx
{
 boolean equals(java.lang.Object r);
 Identity ice_getIdentity();
 boolean ice_isA(String id);
 boolean ice_isA(String id, java.util.Map<String, String> context);
 String[] ice_ids();
 String[] ice_ids(java.util.Map<String, String> context);
 String ice_id();
 String ice_id(java.util.Map<String, String> context);
 void ice_ping();
 void ice_ping(java.util.Map<String, String> context);
 // ...
}

The methods behave as follows:

https://doc.zeroc.com/display/Ice37/Request+Contexts
https://doc.zeroc.com/display/Ice37/IceStorm

Ice 3.7.1 Documentation

3 Copyright 2018, ZeroC, Inc.

equals
This operation compares two proxies for equality. Note that all aspects of proxies are compared by this operation, such as the
communication endpoints for the proxy. This means that, in general, if two proxies compare unequal, that does imply that they denote not
different objects. For example, if two proxies denote the same Ice object via different transport endpoints, returns even equals false
though the proxies denote the same object.

ice_getIdentity
This method returns the identity of the object denoted by the proxy. The identity of an Ice object has the following Slice type:

Slice

module Ice
{
 struct Identity
 {
 string name;
 string category;
 }
}

To see whether two proxies denote the same object, first obtain the identity for each object and then compare the identities:

Java

ObjectPrx o1 = ...;
ObjectPrx o2 = ...;
Identity i1 = o1.ice_getIdentity();
Identity i2 = o2.ice_getIdentity();

if(i1.equals(i2))
{
 // o1 and o2 denote the same object
}
else
{
 // o1 and o2 denote different objects

}

ice_isA
The method determines whether the object denoted by the proxy supports a specific interface. The argument to is a ice_isA ice_isA type

. For example, to see whether a proxy of type denotes a object, we can write:ID ObjectPrx Printer

Java

ObjectPrx o = ...;
if(o != null && o.ice_isA("::M:Printer"))
{
 // o denotes a Printer object
}
else
{
 // o denotes some other type of object

}

Note that we are testing whether the proxy is null before attempting to invoke the method. This avoids getting a ice_isA NullPointerExc
 if the proxy is null.eption

ice_ids
The method returns an array of strings representing all of the type IDs that the object denoted by the proxy supports.ice_ids

https://doc.zeroc.com/display/Ice37/Operations+on+Object#OperationsonObject-ice_isA
https://doc.zeroc.com/display/Ice37/Type+IDs
https://doc.zeroc.com/display/Ice37/Type+IDs
https://doc.zeroc.com/display/Ice37/Operations+on+Object#OperationsonObject-ice_ids

Ice 3.7.1 Documentation

4 Copyright 2018, ZeroC, Inc.

ice_id
The method returns the type ID of the object denoted by the proxy. Note that the type returned is the type of the actual object, ice_id
which may be more derived than the static type of the proxy. For example, if we have a proxy of type , with a static type ID of BasePrx ::

, the return value of might be , or it might something more derived, such as .M::Base ice_id ::M::Base ::M::Derived

ice_ping
The method provides a basic reachability test for the object. If the object can physically be contacted (that is, the object exists ice_ping
and its server is running and reachable), the call completes normally; otherwise, it throws an exception that indicates why the object could
not be reached, such as or .ObjectNotExistException ConnectTimeoutException

The , , , and methods are remote operations and therefore support an additional overloading that accepts a ice_isA ice_ids ice_id ice_ping req
. Also note that there are in , not shown here.uest context other methods ObjectPrx

Proxy Helper Methods
For each Slice interface, the Slice-to-Java compiler generates static helper methods that support down-casting and type discovery:

Java

public interface SimplePrx extends com.zeroc.Ice.ObjectPrx
{
 // ...
 static SimplePrx checkedCast(ObjectPrx b);
 static SimplePrx checkedCast(ObjectPrx b, java.util.Map<String, String> context);
 static SimplePrx checkedCast(ObjectPrx b, String facet);

 static SimplePrx checkedCast(ObjectPrx b, String facet, java.util.Map<String, String> context);
 static SimplePrx uncheckedCast(ObjectPrx b);
 static SimplePrx uncheckedCast(ObjectPrx b, String facet);
 static String ice_staticId();
}

For , if the passed proxy is for an object of type , or a proxy for an object with a type derived from , the cast returns a checkedCast Simple Simple
non-null reference to a proxy of type ; otherwise, if the passed proxy denotes an object of a different type (or if the passed proxy is null), SimplePrx
the cast returns a null reference. Overloaded methods allow you to optionally specify a and a .facet request context

Given a proxy of any type, you can use a to determine whether the corresponding object supports a given type, for example:checkedCast

Java

ObjectPrx obj = ...; // Get a proxy from somewhere...

SimplePrx simple = SimplePrx.checkedCast(obj);
if(simple != null)
{
 // Object supports the Simple interface...
}
else
{
 // Object is not of type Simple...

}

Note that a contacts the server. This is necessary because only the implementation of an object in the server has definite knowledge checkedCast

of the type of an object. As a result, a may throw a or an . (This also checkedCast ConnectTimeoutException ObjectNotExistException

explains the need for the helper method: the Ice run time must contact the server, so we cannot use a simple Java down-cast.)

In contrast, an does not contact the server and unconditionally returns a proxy of the requested type. However, if you do use an uncheckedCast un
, you must be certain that the proxy really does support the type you are casting to; otherwise, if you get it wrong, you will most likely checkedCast

get a run-time exception when you invoke an operation on the proxy. The most likely error for such a type mismatch is OperationNotExistExcept
. However, other exceptions, such as a marshaling exception are possible as well. And, if the object happens to have an operation with the ion

correct name, but different parameter types, no exception may be reported at all and you simply end up sending the invocation to an object of the
wrong type; that object may do rather nonsensical things. To illustrate this, consider the following two interfaces:

https://doc.zeroc.com/display/Ice37/Operations+on+Object#OperationsonObject-ice_id
https://doc.zeroc.com/display/Ice37/Operations+on+Object#OperationsonObject-ice_ping
https://doc.zeroc.com/display/Ice37/Request+Contexts
https://doc.zeroc.com/display/Ice37/Request+Contexts
https://doc.zeroc.com/display/Ice37/Proxy+Methods
https://doc.zeroc.com/display/Ice37/Versioning
https://doc.zeroc.com/display/Ice37/Request+Contexts

Ice 3.7.1 Documentation

5 Copyright 2018, ZeroC, Inc.

Slice

interface Process
{
 void launch(int stackSize, int dataSize);
}

// ...

interface Rocket
{
 void launch(float xCoord, float yCoord);
}

Suppose you expect to receive a proxy for a object and use an to down-cast the proxy:Process uncheckedCast

Java

ObjectPrx obj = ...; // Get proxy...
ProcessPrx process = ProcessPrx.uncheckedCast(obj); // No worries...
process.launch(40, 60); // Oops...

If the proxy you received actually denotes a object, the error will go undetected by the Ice run time: because and have the same Rocket int float
size and because the Ice protocol does not tag data with its type on the wire, the implementation of will simply misinterpret the Rocket::launch
passed integers as floating-point numbers.

In fairness, this example is somewhat contrived. For such a mistake to go unnoticed at run time, both objects must have an operation with the same
name and, in addition, the run-time arguments passed to the operation must have a total marshaled size that matches the number of bytes that are
expected by the unmarshaling code on the server side. In practice, this is extremely rare and an incorrect typically results in a run-uncheckedCast
time exception.

A final warning about down-casts: you must use either a or an to down-cast a proxy. If you use a Java cast, the checkedCast uncheckedCast
behavior is undefined.

Another method generated for every interface is , which returns the string corresponding to the interface. As an example, for ice_staticId type ID
the Slice interface in module , the string returned by is .Simple M ice_staticId "::M::Simple"

Using Proxy Methods
The base proxy class supports a variety of . Since proxies are immutable, each of these "factory ObjectPrx methods for customizing a proxy
methods" returns a copy of the original proxy that contains the desired modification. For example, you can obtain a proxy configured with a ten
second invocation timeout as shown below:

Java

ObjectPrx proxy = communicator.stringToProxy(...);
proxy = proxy.ice_invocationTimeout(10000);

A factory method returns a new proxy object if the requested modification differs from the current proxy, otherwise it returns the current proxy. With
few exceptions, factory methods return a proxy of the same type as the current proxy, therefore it is generally not necessary to repeat a checkedCast
or after using a factory method. Furthermore, the mapping generates type-specific factory methods so that no casts are necessary:uncheckedCast

Java

ObjectPrx base = communicator.stringToProxy(...);
HelloPrx hello = HelloPrx.checkedCast(base);
hello = hello.ice_invocationTimeout(10000); // No cast is necessary
hello.sayHello();

https://doc.zeroc.com/display/Ice37/Type+IDs
https://doc.zeroc.com/display/Ice37/Proxy+Methods

Ice 3.7.1 Documentation

6 Copyright 2018, ZeroC, Inc.

The only exceptions are the factory methods and . Calls to either of these methods may produce a proxy for an object of ice_facet ice_identity

an unrelated type, therefore they return a base proxy that you must subsequently down-cast to an appropriate type using or checkedCast uncheck
.edCast

Object Identity and Proxy Comparison
Proxies provide an method that compares proxies:equals

Java

interface ObjectPrx
{
 boolean equals(java.lang.Object r);
}

Note that proxy comparison with uses of the information in a proxy for the comparison. This means that not only the object identity must equals all
match for a comparison to succeed, but other details inside the proxy, such as the protocol and endpoint information, must be the same. In other
words, comparison with tests for identity, object identity. A common mistake is to write code along the following lines:equals proxy not

Java

ObjectPrx p1 = ...; // Get a proxy...
ObjectPrx p2 = ...; // Get another proxy...

if(!p1.equals(p2))
{
 // p1 and p2 denote different objects // WRONG!
}
else
{
 // p1 and p2 denote the same object // Correct
}

Even though and differ, they may denote the same Ice object. This can happen because, for example, both and embed the same object p1 p2 p1 p2
identity, but each use a different protocol to contact the target object. Similarly, the protocols may be the same, but denote different endpoints
(because a single Ice object can be contacted via several different transport endpoints). In other words, if two proxies compare equal with , equals
we know that the two proxies denote the same object (because they are identical in all respects); however, if two proxies compare unequal with equa

, we know absolutely nothing: the proxies may or may not denote the same object.ls

To compare the object identities of two proxies, you can use a helper function in the class:Util

Java

public final class Util
{
 public static int proxyIdentityCompare(ObjectPrx lhs, ObjectPrx rhs);
 public static int proxyIdentityAndFacetCompare(ObjectPrx lhs, ObjectPrx rhs);
 // ...
}

proxyIdentityCompare allows you to correctly compare proxies for identity:

Java

ObjectPrx p1 = ...; // Get a proxy...
ObjectPrx p2 = ...; // Get another proxy...

if(Util.proxyIdentityCompare(p1, p2) != 0)

Ice 3.7.1 Documentation

7 Copyright 2018, ZeroC, Inc.

{
 // p1 and p2 denote different objects // Correct
}
else
{
 // p1 and p2 denote the same object // Correct
}

The function returns 0 if the identities are equal, if is less than , and 1 if is greater than . (The comparison uses as the major and -1 p1 p2 p1 p2 name
 as the minor sort key.)category

The function behaves similarly, but compares both the identity and the .proxyIdentityAndFacetCompare facet name

In addition, the Java mapping provides two wrapper classes that allow you to wrap a proxy for use as the key of a hashed collection:

Java

public class ProxyIdentityKey
{
 public ProxyIdentityKey(ObjectPrx proxy);
 public int hashCode();
 public boolean equals(java.lang.Object obj);
 public ObjectPrx getProxy();
}

public class ProxyIdentityFacetKey
{
 public ProxyIdentityFacetKey(ObjectPrx proxy);
 public int hashCode();
 public boolean equals(java.lang.Object obj);
 public ObjectPrx getProxy();
}

The constructor caches the identity and the hash code of the passed proxy, so calls to and can be evaluated efficiently. The hashCode equals getP
 method returns the proxy that was passed to the constructor.roxy

As for the comparison functions, only uses the proxy's identity, whereas also includes the facet ProxyIdentityKey ProxyIdentityFacetKey
name.

Deserializing Proxies
Proxy objects implement the interface that enables serialization of proxies to and from a byte stream. You can use the java.io.Serializable
standard class to deserialize all Slice types proxies; proxies are a special case because they must be java.io.ObjectInputStream except
created by a communicator.

To supply a communicator for use in deserializing proxies, an application must use the Ice-provided class :ObjectInputStream

Java

public class ObjectInputStream extends java.io.ObjectInputStream
{
 public ObjectInputStream(Communicator communicator, java.io.InputStream stream)
 throws java.io.IOException;

 public Communicator getCommunicator();
}

The code shown below demonstrates how to use this class:

Java

https://doc.zeroc.com/display/Ice37/Versioning

Ice 3.7.1 Documentation

8 Copyright 2018, ZeroC, Inc.

Communicator communicator = ...
byte[] bytes = ... // data to be deserialized
java.io.ByteArrayInputStream byteStream = new java.io.ByteArrayInputStream(bytes);
ObjectInputStream in = new ObjectInputStream(communicator, byteStream);
ObjectPrx proxy = (ObjectPrx)in.readObject();

Ice raises if an application attempts to deserialize a proxy without supplying a communicator.java.io.IOException

See Also

Interfaces, Operations, and Exceptions
Proxies for Ice Objects
Type IDs
Java Mapping for Operations
Request Contexts
Operations on Object
Proxy Methods
Versioning
IceStorm

https://doc.zeroc.com/display/Ice37/Interfaces%2C+Operations%2C+and+Exceptions
https://doc.zeroc.com/display/Ice37/Proxies+for+Ice+Objects
https://doc.zeroc.com/display/Ice37/Type+IDs
https://doc.zeroc.com/display/Ice37/Java+Mapping+for+Operations
https://doc.zeroc.com/display/Ice37/Request+Contexts
https://doc.zeroc.com/display/Ice37/Operations+on+Object
https://doc.zeroc.com/display/Ice37/Proxy+Methods
https://doc.zeroc.com/display/Ice37/Versioning
https://doc.zeroc.com/display/Ice37/IceStorm

	Java Mapping for Interfaces

