
Ice 3.7.1 Documentation

1 Copyright 2018, ZeroC, Inc.

Parameter Passing in Objective-C
This page shows how to implement parameters for Slice operations in Objective-C.

On this page:

Implementing Parameters for Slice Operations in Objective-C
Memory Management for Operations in Objective-C
Thread-Safe Marshaling in Objective-C

Solution 1: Copying
Solution 2: Copy on Write

Implementing Parameters for Slice Operations in Objective-C
For each parameter of a Slice operation, the Objective-C mapping generates a corresponding parameter for the method in the skeleton. In addition,
every method has an additional, trailing parameter of type . For example, the operation of the interface has no parameters, ICECurrent name Node
but the method of the skeleton protocol has a single parameter of type . We will ignore this parameter for now.name Node ICECurrent

Parameter passing on the server side follows the rules for the client side (with one exception):

In-parameters and the return value are passed by value or by pointer, depending on the parameter type.
Out-parameters are passed by pointer-to-pointer.

The exception to the client-side rules concerns types that come in mutable and immutable variants (strings, sequences, and dictionaries). For these,
the server-side mapping passes the mutable variant where the client-side passes the immutable variant, and vice versa.

To illustrate the rules, consider the following interface that passes string parameters in all possible directions:

Slice

interface Intf
{
 string op(string sin, out string sout);
}

The generated skeleton protocol for this interface looks as follows:

Objective-C

@protocol EXIntf <ICEObject>
-(NSString *) op:(NSMutableString *)sin
 sout:(NSString **)sout
 current:(ICECurrent *)current;
@end

As you can see, the in-parameter is of type , and the out parameter and return value are passed as (the opposite sin NSMutableString NSString
of the client-side mapping). This means that in-parameters are passed to the servant as their mutable variant, and it is safe for you to modify such in-
parameters. This is useful, for example, if a client passes a sequence to the operation, and the operation returns the sequence with a few minor
changes. In that case, there is no need for the operation implementation to copy the sequence. Instead, you can simply modify the passed sequence
as necessary and return the modified sequence to the client.

Here is an example implementation of the operation:

https://doc.zeroc.com/display/Ice37/The+Current+Object

Ice 3.7.1 Documentation

2 Copyright 2018, ZeroC, Inc.

Objective-C

-(NSString *) op:(NSMutableString *)sin
 sout:(NSString **)sout
 current:(ICECurrent *)current
{
 printf("%s\n", [sin UTF8String]); // In-params are initialized
 *sout = [sin appendString:@"appended"]; // Assign out-param
 return @"Done"; // Return a string
}

Memory Management for Operations in Objective-C
If you are not using ARC, to avoid leaking memory, you must be aware of how the Ice run time manages memory for operation implementations:

In-parameters passed to the servant are already autoreleased.
Out-parameters and return values must be returned by the servant as autoreleased values.

This follows the usual Objective-C convention: the allocator of a value is responsible for releasing it. This is what the Ice run time does for in-
parameters, and what you are expected to do for out-parameters and return values. These rules also mean that it is safe to return an in-parameter as
an out-parameter or return value. For example:

Objective-C

-(NSString *) op:(NSMutableString *)sin
 sout:(NSString **)sout
 current:(ICECurrent *)current
{
 *sout = sin; // Works fine.
 return sin; // Works fine.
}

The Ice run time creates and releases a separate autorelease pool for each invocation. This means that the memory for parameters is reclaimed as
soon as the run time has marshaled the operation results back to the client.

Thread-Safe Marshaling in Objective-C
The marshaling semantics of the Ice run time present a subtle thread safety issue that arises when an operation returns data by reference. For
Objective-C applications, this can affect servant methods that return instances of Slice classes, structures, sequences, or dictionaries.

The potential for corruption occurs whenever a servant returns data by reference, yet continues to hold a reference to that data. For example,
consider the following Slice:

Ice 3.7.1 Documentation

3 Copyright 2018, ZeroC, Inc.

Slice

sequence<int> IntSeq;
sequence<IntSeq> IntIntSeq;
sequence<string> StringSeq;
class Grid
{
 StringSeq xLabels;
 StringSeq yLabels;
 IntIntSeq values;
}

interface GridIntf
{
 Grid getGrid();
 void clearValues();
}

And the following servant implementation:

Objective-C

-(Grid*) getGrid:(ICECurrent *)current
{
 Grid* r;
 @synchronized(self)
 {
 r = grid;
 }
 return r;
}

-(void) clearValues:(ICECurrent *)current
{
 @synchronized(self)
 {
 if([grid.values isKindOfClass:[NSMutableArray class]])
 {
 [(NSMutableArray*)grid.values removeAllObjects];
 }
 else
 {
 grid.values = [MutableIntIntSeq array];
 }
 }
}

Suppose that a client invoked the operation. While the Ice run time marshals the returned class in preparation to send a reply message, it is getGrid
possible for another thread to dispatch the operation on the same servant. This race condition can result in several unexpected clearValues
outcomes, including a failure during marshaling or inconsistent data in the reply to . Synchronizing the and operatiogetGrid getGrid clearValues
ns does not fix the race condition because the Ice run time performs its marshaling outside of this synchronization.

Solution 1: Copying

One solution is to implement accessor operations, such as , so that they return copies of any data that might change. There are several getGrid
drawbacks to this approach:

Excessive copying can have an adverse affect on performance.
The operations must return deep copies in order to avoid similar problems with nested values.
The code to create deep copies is tedious and error-prone to write.

Ice 3.7.1 Documentation

4 Copyright 2018, ZeroC, Inc.

Solution 2: Copy on Write

Another solution is to make copies of the affected data only when it is modified. In the revised code shown below, replaces with clearValues grid
a copy that contains empty values, leaving the previous contents of unchanged:grid

Objective-C

-(void) clearValues:(ICECurrent *)current
{
 @synchronized(self)
 {
 grid.values = [MutableIntIntSeq array];
 }
}

This allows the Ice run time to safely marshal the return value of because its members are never modified again. For applications where getGrid
data is read more often than it is written, this solution is more efficient than the previous one because accessor operations do not need to make
copies. Furthermore, intelligent use of shallow copying can minimize the overhead in mutating operations.

See Also

Server-Side Objective-C Mapping for Interfaces
Raising Exceptions in Objective-C
The Current Object

https://doc.zeroc.com/display/Ice37/Server-Side+Objective-C+Mapping+for+Interfaces
https://doc.zeroc.com/display/Ice37/Raising+Exceptions+in+Objective-C
https://doc.zeroc.com/display/Ice37/The+Current+Object

	Parameter Passing in Objective-C

