
Ice 3.7.1 Documentation

1 Copyright 2018, ZeroC, Inc.

AMI in Python with Futures
On this page:

Basic Asynchronous API in Python
Asynchronous Proxy Methods in Python
Asynchronous Exception Semantics in Python

Future Classes in Python
Python 3.5 Features

asyncio Integration
Awaitable Objects

Polling for Completion in Python
Asynchronous Oneway Invocations in Python
Flow Control in Python
Asynchronous Batch Requests in Python
Concurrency Semantics for AMI in Python

Basic Asynchronous API in Python
Consider the following simple Slice definition:

Slice

module Demo
{
 interface Employees
 {
 string getName(int number);
 }
}

Asynchronous Proxy Methods in Python

In addition to the synchronous proxy method, the Python mapping generates the following asynchronous proxy method:

Python

def getNameAsync(self, number, context=None)

As you can see, the operation generates a method, which optionally accepts a . getName getNameAsync per-invocation context getNameAsync
sends (or queues) an invocation of , and does not block the calling thread. It returns an instance of that you can getName Ice.InvocationFuture
use in a number of ways, including blocking to obtain the result, configuring an action to be executed when the result becomes available, and
canceling the invocation.

Here's an example that calls :getNameAsync

Python

e = EmployeePrx.checkedCast(...)
f = e.getNameAsync(99)

Continue to do other things here...

name = f.result()

Because does not block, the calling thread can do other things while the operation is in progress.getNameAsync

An asynchronous proxy method uses the same parameter mapping as for ; the only difference is that the result (if any) is synchronous operations
returned via an . For example, consider the following operation:InvocationFuture

https://doc.zeroc.com/display/Ice37/Request+Contexts
https://doc.zeroc.com/display/Ice37/Python+Mapping+for+Operations

Ice 3.7.1 Documentation

2 Copyright 2018, ZeroC, Inc.

Slice

double op(int inp1, string inp2, out bool outp1, out long outp2);

The generated code looks like this:

Python

def opAsync(self, inp1, inp2, context=None)

Now let's call to demonstrate one way of asynchronously executing an action when the invocation completes:add_done_callback

Python

p.opAsync(42, "value for inp2").add_done_callback(lambda future: ret, outp1, outp2 = future.result())

As with the synchronous mapping, an operation that returns multiple values supplies its result as a tuple. The completion callback, in this case a
lambda function, receives the future as its argument and extracts the values from the result tuple.

Asynchronous Exception Semantics in Python

If an invocation raises an exception, the exception can be obtained from the future in several ways:

Call on the future; raises the exception directlyresult result
Call on the future; returns the exception objectexception exception

The exception is provided by the future, even if the actual error condition for the exception was encountered during the call to the method opAsync
("on the way out"). The advantage of this behavior is that all exception handling is located with the code that handles the future (instead of being
present twice, once where the method is called, and again where the future is handled).opAsync

There are two exceptions to this rule:

if you destroy the communicator and then make an asynchronous invocation, the method throws opAsync CommunicatorDestroyedExce
 directly.ption

a call to an function can throw . An function throws this exception if you call an operation that has a Async TwowayOnlyException Async
return value or out-parameters on a oneway proxy.

Future Classes in Python
Ice provides two future classes: and . Asynchronous proxy invocations return an instance of Ice.Future Ice.InvocationFuture InvocationFu

, which is a subclass of . The API for is similar to that of Python's and ture Future Ice.Future asyncio.Future concurrent.futures.
 classes, while adds some Ice-specific methods that clients may find useful.Future InvocationFuture

Ice 3.7.1 Documentation

3 Copyright 2018, ZeroC, Inc.

Python

class Future(...):
 def cancel(self)
 def cancelled(self)
 def running(self)
 def done(self)

 def add_done_callback(self, fn)

 def result(self, timeout=None)
 def exception(self, timeout=None)

 def set_result(self, result)
 def set_exception(self, ex)

 def completed(result)
 completed = staticmethod(completed)

class InvocationFuture(Future):
 def add_done_callback_async(self, fn)

 def is_sent(self)
 def is_sent_synchronously(self)
 def add_sent_callback(self, fn)
 def add_sent_callback_async(self, fn)
 def sent(self, timeout=None)
 def set_sent(self, sentSynchronously)

 def communicator(self)
 def connection(self)
 def proxy(self)
 def operation(self)

The methods have the following semantics:Future

cancel(self)
This method prevents a queued invocation from being sent or, if the invocation has already been sent, ignores a reply if the server sends
one. is a local operation and has no effect on the server. A canceled invocation is considered to be completed, meaning returncancel done
s true, and the result of the invocation is an .Ice.InvocationCanceledException

cancelled(self)
This method returns frue if the invocation was cancelled via a call to , or false otherwise.cancel

running(self)
This method returns true if the invocation has not yet completed or been cancelled, or false otherwise.

done(self)
This method returns true if the invocation has completed (either successfully or exceptionally) or has been cancelled, or false otherwise.

add_done_callback(self, fn)
This method registers a callback to be executed when the invocation completes, either successfully or exceptionally. The callback function
receives the future as its only argument. If the invocation is already completed at the time is called, the callback add_done_callback
method is invoked recursively from the calling thread, otherwise the callback method is invoked in the thread that completes the invocation.

result(self, timeout=None)
This method returns the result of the invocation. If an optional timeout is provided, the method will block for up to the given timeout waiting
for the invocation to complete and raises if the timeout expires without completion. If no timeout is provided, the Ice.TimeoutException
method blocks indefinitely. If the invocation completes with an exception, the method raises the exception directly. For a Slice operation
declared with a return type, the method returns upon successful completion.void None

exception(self, timeout=None)
This method returns the exception that completed the invocation, or if the invocation completed successfully. If an optional timeout is None
provided, the method will block for up to the given timeout waiting for the invocation to complete and raises if the Ice.TimeoutException
timeout expires without completion. If no timeout is provided, the method blocks indefinitely.

Ice 3.7.1 Documentation

4 Copyright 2018, ZeroC, Inc.

set_result(self, result)
This method completes the invocation successfully using the given result. Calling this method has no effect if the invocation is already
completed.

set_exception(self, ex)
This method completes the invocation exceptionally using the given exception. Calling this method has no effect if the invocation is already
completed.

completed(result)
This static convenience method returns an instance of that is already completed successfully with the given result.Ice.Future

The methods have the following semantics:InvocationFuture

add_done_callback_async(self, fn)
This method's semantics differ from that of in the situation where the future is already completed. When you call add_done_callback add

 and the future is already completed, the callback will be invoked by an Ice thread (or by a if one is _done_callback_async dispatcher
configured).

is_sent(self)
When you call an asynchronous proxy method, the Ice run time attempts to write the corresponding request to the client-side transport. If the
transport cannot accept the request, the Ice run time queues the request for later transmission. returns true if, at the time it is is_sent
called, the request has been written to the local transport (whether it was initially queued or not). Otherwise, if the request is still queued or
an exception occurred before the request could be sent, returns false.is_sent

is_sent_synchronously(self)
This method returns true if a request was written to the client-side transport without first being queued. If the request was initially queued, is

 returns false (independent of whether the request is still in the queue or has since been written to the client-side _sent_synchronously
transport).

add_sent_callback(self, fn)
This method registers a callback to be executed when the invocation has been sent. The callback function receives two arguments: the
future object and a boolean indicating whether the invocation was sent synchronously. If the invocation is already sent at the time add_sent

 is called, the callback method is invoked recursively from the calling thread. Otherwise, the callback method is invoked by an _callback
Ice thread (or by a if one is configured).dispatcher

add_sent_callback_async(self, fn)
This method's semantics differ from that of in the situation where the invocation is already sent. When you call add_sent_callback add_s

 and the invocation is already sent, the callback will be invoked by an Ice thread (or by a if one is ent_callback_async dispatcher
configured).

sent(self, timeout=None)
This method waits for the invocation to be sent and returns a boolean indicating whether the invocation was sent synchronously. If an
optional timeout is provided, the method will block for up to the given timeout waiting for the invocation to be sent and raises Ice.

 if the timeout expires beforehand. If no timeout is provided, the method blocks indefinitely. If the invocation completes TimeoutException
with an exception, the method raises the exception directly.

set_sent(self, sentSynchronously)
This method marks the invocation as sent, and the boolean argument indicates whether it was sent synchronously.

communicator(self)
This method returns the communicator that sent the invocation.

connection(self)
This method returns the connection that was used for the invocation. Note that, for typical asynchronous proxy invocations, this method
returns a nil value because the possibility of automatic retries means the connection that is currently in use could change unexpectedly. The

 method only returns a non-nil value when the object is obtained by calling getConnection AsyncResult begin_flushBatchRequests
on a object.Connection

proxy(self)
This method returns the proxy that was used to call the asynchronous proxy method, or if the future was not obtained via an None
asynchronous proxy invocation.

operation(self)
This method returns the name of the operation.

Python 3.5 Features
Ice's future types provide some additional features when using Python 3.5 or later.

asyncio Integration

https://doc.zeroc.com/display/Ice37/Dispatching+Requests+to+User+Threads
https://doc.zeroc.com/display/Ice37/Dispatching+Requests+to+User+Threads
https://doc.zeroc.com/display/Ice37/Dispatching+Requests+to+User+Threads

Ice 3.7.1 Documentation

5 Copyright 2018, ZeroC, Inc.

The function wraps an Ice future object with an instance of . The function accepts an object and Ice.wrap_future asyncio.Future Ice.Future
returns an object. Since objects support use in multi-threaded applications, ensures that the asyncio.Future Ice.Future wrap_future
resulting object is completed in a thread-safe manner.asyncio.Future

Awaitable Objects

Ice.Future is an object, meaning an instance can be used as the target of the keyword. Note however that your chosen event awaitable await
loop implementation must also support objects. For example, attempting to call on an while using the Ice.Future await Ice.Future asyncio
event loop will result in an error because 's event loop doesn't support "foreign" future types.asyncio

One situation where objects can be awaited is in a method that is implemented as a coroutine.Ice.Future servant dispatch

Polling for Completion in Python
The methods allow you to poll for call completion. Polling is useful in a variety of cases. As an example, consider the following InvocationFuture
simple interface to transfer files from client to server:

Slice

interface FileTransfer
{
 void send(int offset, ByteSeq bytes);
}

The client repeatedly calls to send a chunk of the file, indicating at which offset in the file the chunk belongs. A naïve way to transmit a file send
would be along the following lines:

Python

file = open(...)
ft = FileTransferPrx.checkedCast(...)
chunkSize = ...
offset = 0
while not file.eof():
 bytes = file.read(chunkSize) # Read a chunk
 ft.send(offset, bytes) # Send the chunk
 offset += len(bytes.length)

This works, but not very well: because the client makes synchronous calls, it writes each chunk on the wire and then waits for the server to receive
the data, process it, and return a reply before writing the next chunk. This means that both client and server spend much of their time doing nothing
— the client does nothing while the server processes the data, and the server does nothing while it waits for the client to send the next chunk.

Using asynchronous calls, we can improve on this considerably:

Python

file = open(...)
ft = FileTransferPrx.checkedCast(...)
chunkSize = ...
offset = 0

results = []
numRequests = 5

while not file.eof():
 bytes = file.read(chunkSize) # Read a chunk

 # Send up to numRequests + 1 chunks asynchronously.
 f = ft.sendAsync(offset, bytes)
 offset += len(bytes)

https://doc.zeroc.com/display/Ice37/Asynchronous+Method+Dispatch+%28AMD%29+in+Python

Ice 3.7.1 Documentation

6 Copyright 2018, ZeroC, Inc.

 # Wait until this request has been passed to the transport.
 f.sent()
 results.append(f)

 # Once there are more than numRequests, wait for the least
 # recent one to complete.
 while len(results) > numRequests:
 f = results[0]
 del results[0]
 f.result()

Wait for any remaining requests to complete.
while len(results) > 0:
 f = results[0]
 del results[0]
 f.result()

With this code, the client sends up to chunks before it waits for the least recent one of these requests to complete. In other numRequests + 1
words, the client sends the next request without waiting for the preceding request to complete, up to the limit set by . In effect, this numRequests
allows the client to "keep the pipe to the server full of data": the client keeps sending data, so both client and server continuously do work.

Obviously, the correct chunk size and value of depend on the bandwidth of the network as well as the amount of time taken by the numRequests
server to process each request. However, with a little testing, you can quickly zoom in on the point where making the requests larger or queuing more
requests no longer improves performance. With this technique, you can realize the full bandwidth of the link to within a percent or two of the
theoretical bandwidth limit of a native socket connection.

Asynchronous Oneway Invocations in Python
You can invoke operations via oneway proxies asynchronously, provided the operation has return type, does not have any out-parameters, and void
does not raise user exceptions. If you call an asynchronous proxy method on a oneway proxy for an operation that returns values or raises a user
exception, the method throws .TwowayOnlyException

The future returned for a oneway invocation completes as soon as the request is successfully written to the client-side transport. The future
completes exceptionally if an error occurs before the request is successfully written.

Flow Control in Python
Asynchronous method invocations never block the thread that calls the method: the Ice run time checks to see whether it can write the begin_
request to the local transport. If it can, it does so immediately in the caller's thread. (In that case, InvocationFuture.is_sent_synchronously
returns true.) Alternatively, if the local transport does not have sufficient buffer space to accept the request, the Ice run time queues the request
internally for later transmission in the background. (In that case, returns false.)InvocationFuture.is_sent_synchronously

This creates a potential problem: if a client sends many asynchronous requests at the time the server is too busy to keep up with them, the requests
pile up in the client-side run time until, eventually, the client runs out of memory.

The API provides a way for you to implement flow control by counting the number of requests that are queued so, if that number exceeds some
threshold, the client stops invoking more operations until some of the queued operations have drained out of the local transport.

You can supply a sent callback to be notified when the request was successfully sent:

Python

def sentCallback(future, sentSynchronously):
 # The request was sent, send another!

proxy = ...

future = proxy.doSomethingAsync()
future.add_sent_callback(sentCallback)

The method has the following semantics:add_sent_callback

Ice 3.7.1 Documentation

7 Copyright 2018, ZeroC, Inc.

If the Ice run time was able to pass the entire request to the local transport immediately, the action will be invoked from the current thread
and the argument will be true.sentSynchronously
If Ice wasn't able to write the entire request without blocking, the action will eventually be invoked from an Ice thread pool thread and the sen

 argument will be false.tSynchronously

Asynchronous Batch Requests in Python
You can invoke operations via batch oneway proxies asynchronously, provided the operation has return type, does not have any out-void
parameters, and does not raise user exceptions. If you call an asynchronous proxy method on a oneway proxy for an operation that returns values or
raises a user exception, the method throws .TwowayOnlyException

The future returned for a batch oneway invocation is always completed and indicates the successful queuing of the batch invocation. The future
completes exceptionally if an error occurs before the request is queued.

Applications that send can either flush a batch explicitly or allow the Ice run time to flush automatically. The proxy method batched requests ice_flu
 performs an immediate flush using the synchronous invocation model and may block the calling thread until the entire message shBatchRequests

can be sent. Ice also provides an asynchronous version of this method so you can flush batch requests asynchronously.

ice_flushBatchRequestsAsync is a proxy method that flushes any batch requests queued by that proxy, without blocking the calling thread.

In addition, similar methods are available on the communicator and the object that is returned by . Connection InvocationFuture.connection
These methods flush batch requests sent via the same communicator and via the same connection, respectively.

Concurrency Semantics for AMI in Python
For the returned by an asynchronous proxy method, the Ice run time invokes or from an Ice InvocationFuture set_result set_exception
thread pool thread. When you register an action with , the thread in which your action executes depends on the completion add_done_callback
status of the future. If the future is already complete at the time you call , the callback function will be invoked immediately in add_done_callback
the calling thread. If the future is not yet complete when you call , the action will eventually execute in an Ice thread pool add_done_callback
thread.

The semantics are slightly different when you register an action with : the action is always executed in an Ice thread add_done_callback_async
pool thread regardless of the completion status of the future at the time of the call.

Refer to the discussion for information about the concurrency semantics of the flow control methods.flow control

See Also

Python Mapping for Operations
Request Contexts
Batched Invocations

If a is configured, the Ice thread pool thread delegates the execution of the action to the dispatcher.dispatcher

https://doc.zeroc.com/display/Ice37/Batched+Invocations
https://doc.zeroc.com/display/Ice37/Python+Mapping+for+Operations
https://doc.zeroc.com/display/Ice37/Request+Contexts
https://doc.zeroc.com/display/Ice37/Batched+Invocations
https://doc.zeroc.com/display/Ice37/Dispatching+Requests+to+User+Threads

	AMI in Python with Futures

