
Ice 3.7.1 Documentation

1 Copyright 2018, ZeroC, Inc.

Object Adapter States
On this page:

Object Adapter State Transitions
Changing Object Adapter States

Object Adapter State Transitions
An object adapter has a number of processing states:

Holding
In this state, any incoming requests for the adapter are held, that is, not dispatched to servants.

For TCP/IP (and other stream-oriented protocols), the server-side run time stops reading from the corresponding transport endpoint while
the adapter is in the holding state. In addition, it also does not accept incoming connection requests from clients. This means that if a client
sends a request to an adapter that is in the holding state, the client eventually receives a or TimeoutException ConnectTimeoutExcept

 (unless the adapter is placed into the active state before the timer expires). ion

For UDP, client requests that arrive at an adapter that is in the holding state are thrown away.

Immediately after creation of an adapter, the adapter is in the holding state. This means that requests are not dispatched until you place the
adapter into the active state.

Active
In this state, the adapter accepts incoming requests and dispatches them to servants. A newly-created adapter is initially in the holding
state. The adapter begins dispatching requests as soon as you place it into the active state.

You can transition between the active and the holding state as many times as you wish.

Inactive
In this state, the adapter has conceptually been destroyed (or is in the process of being destroyed). Deactivating an adapter destroys all
transport endpoints that are associated with the adapter. Requests that are executing at the time the adapter is placed into the inactive state
are allowed to complete, but no new requests are accepted. (New requests are rejected with an exception). Any attempt to use a
deactivated object adapter results in an .ObjectAdapterDeactivatedException

Changing Object Adapter States
The interface offers operations that allow you to change the adapter state, as well as to wait for a state change to be complete:ObjectAdapter

The distinction vs Active only to requests dispatched through endpoints configured on the object adapter. It does not Holding applies
apply to requests received from , nor does it apply to (unless you disable collocation bidirectional connections collocated dispatches
optimization).

An object adapter configured with a router accepts only requests received over the (bidirectional) connection to the router, and collocated
dispatches.

https://doc.zeroc.com/display/Ice37/Bidirectional+Connections
https://doc.zeroc.com/display/Ice37/Collocated+Invocation+and+Dispatch

Ice 3.7.1 Documentation

2 Copyright 2018, ZeroC, Inc.

Slice

module Ice
{
 local interface ObjectAdapter
 {
 // ...

 void activate();
 void hold();
 void waitForHold();
 void deactivate();
 void waitForDeactivate();
 void isDeactivated();
 void destroy();

 // ...
 }
}

The operations behave as follows:

activate
The operation places the adapter into the state. Activating an adapter that is already active has no effect. The Ice run time activate active
starts dispatching requests to servants for the adapter as soon as is called.activate

hold
The operation places the adapter into the state. Requests that arrive after calling are held as described above. Requests hold holding hold
that are in progress at the time is called are allowed to complete normally. Note that returns immediately without waiting for hold hold
currently executing requests to complete.

waitForHold
The operation suspends the calling thread until the adapter has completed its transition to the holding state, that is, until all waitForHold
currently executing requests have finished. You can call from multiple threads, and you can call while the waitForHold waitForHold
adapter is in the active state. If you call on an adapter that is already in the holding state, returns immediately.waitForHold waitForHold

deactivate
The operation initiates deactivation of the adapter: requests that arrive after calling are rejected, but currently deactivate deactivate
executing requests are allowed to complete. Once all requests have completed, the adapter enters the state. Note that inactive deactivate
returns immediately without waiting for the currently executing requests to complete. A deactivated adapter cannot be reactivated; you can
create a new adapter with the same name, but only after calling on the existing adapter. Any attempt to use a deactivated object destroy
adapter results in an . During deactivation, the association with bidirectional connections (if any) ObjectAdapterDeactivatedException
is cleared. Deactivation also makes the adapter ineligible for collocated dispatches.

waitForDeactivate
The operation suspends the calling thread until the adapter has completed its transition to the state, that is, waitForDeactivate inactive
until all currently executing requests have completed. You can call from multiple threads, and you can call waitForDeactivate waitForD

 while the adapter is in the active or holding state. Calling on an adapter that is in the inactive state does eactivate waitForDeactivate
nothing and returns immediately.

isDeactivated
The operation returns true if has been invoked on the adapter. A return value of true does not necessarily isDeactivated deactivate
indicate that the adapter has fully transitioned to the inactive state, only that it has begun this transition. Applications that need to know when
deactivation is completed can use .waitForDeactivate

destroy
The operation deactivates the adapter and releases all of its resources. Internally, invokes followed by destroy destroy deactivate wai

, therefore the operation blocks until all currently executing requests have completed. Furthermore, any servants tForDeactivate
associated with the adapter are destroyed, all transport endpoints are closed, and the adapter's name becomes available for reuse.
Destroying a communicator implicitly destroys all of its object adapters. Invoking on an adapter is only necessary when you need destroy
to ensure that its resources are released prior to the destruction of its communicator.

Placing an adapter into the holding state is useful, for example, if you need to make state changes in the server that require the server (or a group of
servants) to be idle. For example, you could place the implementation of your servants into a dynamic library and upgrade the implementation by
loading a newer version of the library at run time without having to shut down the server.

Similarly, waiting for an adapter to complete its transition to the inactive state is useful if your server needs to perform some final clean-up work that
cannot be carried out until all executing requests have completed.

Ice 3.7.1 Documentation

3 Copyright 2018, ZeroC, Inc.

Note that you can create an object adapter with the same name as a previous object adapter, but only once on the previous adapter has destroy
completed.

See Also

Collocated Invocation and Dispatch
Bidirectional Connections

https://doc.zeroc.com/display/Ice37/Collocated+Invocation+and+Dispatch
https://doc.zeroc.com/display/Ice37/Bidirectional+Connections

	Object Adapter States

