Ice 3.7.1 Documentation

AMI in C-Sharp with Tasks

On this page:

® Basic Asynchronous API in C#
© Asynchronous Proxy Methods in C#
© Asynchronous Mapping for Out Parameters in C#
o Asynchronous Exception Semantics in C#
Polling for Completion in C#
Asynchronous Oneway Invocations in C#
Flow Control in C#
Asynchronous Batch Requests in C#
Canceling Asynchronous Requests in C#
Concurrency Semantics for AMI in C#

Basic Asynchronous APl in C#

Consider the following simple Slice definition:

Slice

nodul e Deno

{

interface Enpl oyees

{
}

string getName(int nunber);

Asynchronous Proxy Methods in C#

Besides the synchronous proxy methods, sl i ce2cs generates the following asynchronous proxy method:

C#
public interface Enpl oyeesPrx : I|ce. ObjectPrx
{
Syst em Thr eadi ng. Tasks. Task<stri ng>
get NaneAsync(i nt nunber,
I ce. Optional Context context = new | ce. Optional Context (),
Syst em | Progr ess<bool > progress = null,
Syst em Thr eadi ng. Cancel | ati onToken cancel = new System Threadi ng. Cancel | ati onToken());
}

As you can see, the get Nane operation generates a get NaneAsync method that accepts several optional parameters:

® aper-invocation context

® asent callback

® a cancellation token
The get NaneAsync method sends (or queues) an invocation of get Nane. This method does not block the calling thread. It returns a Task that you
can use in a number of ways, including blocking to obtain the result, configuring a continuation to be executed when the result becomes available,
and polling to check the status of the request.

Here's an example that calls get NaneAsync:

Copyright 2018, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Request+Contexts

Ice 3.7.1 Documentation

C#

Enpl oyeesPrx e = ...;
Task<string>t = e.getNameAsync(99);

/1 Continue to do other things here...

string name = t.Result;

Because get NameAsync does not block, the calling thread can do other things while the operation is in progress.

Asynchronous Mapping for Out Parameters in C#

.NET's standard Task API only allows a task to produce one result value. Since a Slice operation could potentially return any number of values, the
asynchronous mapping must differ significantly from the synchronous mapping.

The asynchronous mapping depends on how many values an operation returns, including out parameters and a non-voi d return value:

® Zero values
The corresponding C# method returns an instance of Syst em Thr eadi ng. Tasks. Task.

® One value
The corresponding C# method returns an instance of Syst em Thr eadi ng. Tasks. Task<T> where T is the mapped type, regardless of
whether the Slice definition of the operation declared it as a return value or as an out parameter. Consider this example:

Slice

interface |

{
string opl();
voi d op2(out string nane);

The asynchronous mapping generates corresponding methods with identical signatures:

Ct#
public interface IPrx : Ice.QbjectPrx
{
Syst em Thr eadi ng. Tasks. Task<stri ng>
oplAsync(| ce. Optional Context context = new Ice. Optional Context(),
Syst em | Progress<bool > progress = nul |,
Syst em Thr eadi ng. Cancel | ati onToken cancel = new System Threadi ng. Cancel | ati onToken());
Syst em Thr eadi ng. Tasks. Task<stri ng>
op2Async(|ce. Optional Cont ext context = new |ce. Optional Context(),
Syst em | Progress<bool > progress = null,
Syst em Thr eadi ng. Cancel | ati onToken cancel = new System Threadi ng. Cancel | ati onToken());
}

® Multiple values
The Slice-to-C# translator generates an extra structure to hold the results of an operation that returns multiple values. This "result type"
resides in the same namespace as the proxy interface and has the name | nt er f ace_COpResul t, where | nt er f ace represents the name
of the Slice interface that defines the operation Op. The leading character of the operation name Op is always capitalized. The values of out
parameters are provided in corresponding data members of the same names. If the operation declares a return value, its value is provided
in the data member named r et ur nVal ue. If an out parameter is also named r et ur nVal ue, the data member to hold the operation's
return value is named _r et ur nVal ue instead. The result type defines a "one-shot" constructor that accepts and assigns a value for each of
its data members. The corresponding C# method returns an instance of Syst em Thr eadi ng. Tasks. Task<T> where T is the result type.
Consider this example:

Copyright 2018, ZeroC, Inc.

Ice 3.7.1 Documentation

Slice

interface Exanple

{
}

doubl e op(int inpl, string inp2, out bool outpl, out |ong outp2);

The generated code looks like this:

C#

public struct Exanpl e_OpResult

{
publ i c Exanpl e_OpResul t (doubl e returnVal ue, bool outpl, long outp2) { ... }
publ i c doubl e returnVval ue;
public bool outpl;
public |ong outp2;
}
public interface ExanplePrx : Ice. ObjectPrx
{
Syst em Thr eadi ng. Tasks. Task<Exanpl e_QpResul t >
opAsync(int inpl, string inp2,
I ce. Optional Context context = new |ce. Optional Context(),
System | Progress<bool > progress = null,
Syst em Thr eadi ng. Cancel | ati onToken cancel = new System Threadi ng. Cancel | ati onToken());
}

Now let's invoke opAsync to demonstrate one way of asynchronously executing an action when the invocation completes:

C#

ExanmplePrx e = ...;
e. opAsync(). Conti nueWth((t) =>

{
try
{
var r = t.Result; // Returns Exanpl e_OpResult
Consol e. WiteLine("returnValue = {0} outpl = {1} outp2 = {2}", r.returnValue, r.outpl, r.
out p2);
}
catch (System Aggregat eExcepti on ex)
/1 handl e exception...
}
b

Here's a simpler version that uses the awai t keyword:

Copyright 2018, ZeroC, Inc.

Ice 3.7.1 Documentation

C#

ExanmplePrx e = ...;

try
{
var r = await e.opAsync();
Consol e. WiteLine("returnValue = {0} outpl = {1} outp2 = {2}", r.returnValue, r.outpl, r.outp2);
}
catch (Ice. Exception ex)
{
/1 handl e exception...
}

Asynchronous Exception Semantics in C#

If an invocation raises an exception, the exception can be obtained from the task. For example, calling Wi t on the task raises a Syst em
Aggr egat eExcept i on whose | nner Except i on property contains the actual exception. The task's Except i on property also returns the Aggr ega
t eExcept i on if the exception has already occurred at the time you access the property.

The exception is provided by the task, even if the actual error condition for the exception was encountered during the call to the opAsync method
("on the way out"). The advantage of this behavior is that all exception handling is located with the code that handles the task (instead of being
present twice, once where the opAsync method is called, and again where the task is handled).
There are two exceptions to this rule:
® if you destroy the communicator and then make an asynchronous invocation, the opAsync method throws Conmuni cat or Dest r oyedExce
pti on directly.

® acallto an Async function can throw TwowayOnl yExcept i on. An Async function throws this exception if you call an operation that has a
return value or out-parameters on a oneway proxy.

Using the awai t keyword to invoke an asynchronous proxy method does not raise Aggr egat eExcept i on but rather raises the inner
exception directly. In other words, the exception semantics with awai t are the same as if you had invoked the synchronous version of the
proxy method.

Polling for Completion in C#

The asynchronous API allows you to poll for call completion, which can be useful in a variety of cases. As an example, consider the following simple
interface to transfer files from client to server:

Slice

interface Fil eTransfer

{
}

voi d send(int offset, ByteSeq bytes);

The client repeatedly calls send to send a chunk of the file, indicating at which offset in the file the chunk belongs. A naive way to transmit a file
would be along the following lines:

Copyright 2018, ZeroC, Inc.

Ice 3.7.1 Documentation

C#

FileHandl e file = open(...);
Fil eTransferPrx ft = ...;
const int chunkSize = ...;
int offset = 0;
while(!file.eof())

{
byte[] bs;
bs = file.read(chunkSize); // Read a chunk
ft.send(of fset, bs); /1 Send the chunk
of fset += bs. Length;

}

This works, but not very well: because the client makes synchronous calls, it writes each chunk on the wire and then waits for the server to receive
the data, process it, and return a reply before writing the next chunk. This means that both client and server spend much of their time doing nothing
— the client does nothing while the server processes the data, and the server does nothing while it waits for the client to send the next chunk.

Using asynchronous calls, we can improve on this considerably:

C#

usi ng System Thr eadi ng;
usi ng System Threadi ng. Tasks;

FileHandl e file = open(...);
Fil eTransferPrx ft = ...;
const int chunkSize = ...;
int offset = 0;

var results = new LinkedLi st <Task>();
const int nunmRequests = 5;
var sent = new Aut oReset Event (fal se);
while(!file.eof())
{

byte[] bs;

bs = file.read(chunkSize);

/1 Send up to numRequests + 1 chunks asynchronously.
var task = ft.sendAsync(of fset, bs, progress:(ss) => sent.Set());
of fset += bs. Length;

/1 Wait until this request has been passed to the transport.
sent. Wai t One();
resul ts. AddLast (t ask);

/'l Once there are nore than nunRequests, wait for the |east
/1 recent one to conplete.
whi | e(resul ts. Count > nunRequests)
{
var t = results.First;
resul ts. RenoveFirst();
t.Wait();

}

/1 Wait for any remaining requests to conplete.
Task. Wi tAl'l (results. ToArray());

With this code, the client sends up to nunRequests + 1 chunks before it waits for the least recent one of these requests to complete. In other
words, the client sends the next request without waiting for the preceding request to complete, up to the limit set by nunRequest s. In effect, this
allows the client to "keep the pipe to the server full of data": the client keeps sending data, so both client and server continuously do work.

Copyright 2018, ZeroC, Inc.

Ice 3.7.1 Documentation

Obviously, the correct chunk size and value of nunRequest s depend on the bandwidth of the network as well as the amount of time taken by the
server to process each request. However, with a little testing, you can quickly zoom in on the point where making the requests larger or queuing more
requests no longer improves performance. With this technique, you can realize the full bandwidth of the link to within a percent or two of the
theoretical bandwidth limit of a native socket connection.

Asynchronous Oneway Invocations in C#

You can invoke operations via oneway proxies asynchronously, provided the operation has voi d return type, does not have any out-parameters, and
does not raise user exceptions. If you call an asynchronous method on a oneway proxy for an operation that returns values or raises a user
exception, the proxy method throws Twoway Onl yExcept i on.

The task returned for a oneway invocation completes as soon as the request is successfully written to the client-side transport. The task completes
with an exception if an error occurs before the request is successfully written.

Flow Control in C#

Asynchronous method invocations never block the thread that calls the asynchronous proxy method. The Ice run time checks to see whether it can
write the request to the local transport. If it can, it does so immediately in the caller's thread. Alternatively, if the local transport does not have
sufficient buffer space to accept the request, the Ice run time queues the request internally for later transmission in the background.

This creates a potential problem: if a client sends many asynchronous requests at the time the server is too busy to keep up with them, the requests
pile up in the client-side run time until, eventually, the client runs out of memory.

The API provides a way for you to implement flow control by counting the number of requests that are queued so, if that number exceeds some
threshold, the client stops invoking more operations until some of the queued operations have drained out of the local transport. One of the optional
arguments to every asynchronous proxy invocation is a Syst em | Pr ogr ess<bool >. If you provide a delegate, the Ice run time will eventually
invoke it when the request has been sent and provide a boolean argument indicating whether the request was sent synchronously. This argument is
true if the entire request could be transferred to the local transport in the caller's thread without blocking, otherwise the argument is false.
Furthermore, a value of true indicates that Ice is invoking your delegate recursively from the calling thread, whereas a value of false indicates that Ice
is invoking the delegate from an Ice thread pool thread.

Here's a simple example to demonstrate the flow control feature:

C#

Exanpl ePrx proxy = ...;
pr oxy. doSonet hi ngAsync(progress: (sent Synchronously) =>

{
i f (sent Synchronousl y)
{
/1 Entire request was accepted by the transport,
/1 called recursively fromthis thread
}
el se
{
/'l Request was queued but has now been sent,
/1 called froma separate thread
}
IOk

Using this feature, you can limit the number of queued requests by counting the number of requests that are queued and decrementing the count
when the Ice run time passes a request to the local transport.

Asynchronous Batch Requests in C#

Applications that send batched requests can either flush a batch explicitly or allow the Ice run time to flush automatically. The proxy method i ce_fl u
shBat chRequest s performs an immediate flush using the synchronous invocation model and may block the calling thread until the entire message
can be sent. Ice also provides asynchronous versions of this method so you can flush batch requests asynchronously.

Copyright 2018, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Batched+Invocations

Ice 3.7.1 Documentation

The proxy method i ce_f | ushBat chRequest sAsync flushes any batch requests queued by that proxy. In addition, similar methods are available
on the communicator and the Connect i on objects. These methods flush batch requests sent via the same communicator and via the same
connection, respectively.

Canceling Asynchronous Requests in C#

Every asynchronous proxy method accepts an optional instance of the structure Syst em Thr eadi ng. Cancel | at i onToken. The default value is
an empty structure, which is equivalent to passing Cancel | at i onToken. None. If your application requires the ability to cancel an asynchronous
request, you need to create a Cancel | ati onTokenSour ce from which you can obtain a token. Cancelling a request is achieved by calling Cancel
on the source object.

G) Cancellation prevents a queued invocation from being sent or, if the invocation has already been sent, ignores a reply if the server sends
one. Cancellation is a local operation and has no effect on the server. The result of a canceled invocation is an | ce: :
I nvocat i onCancel edExcepti on.

Concurrency Semantics for AMI in C#

The default behavior of a call to Cont i nueW t h is to execute the continuation in a separate thread from the .NET thread pool. If you're trying to
minimize thread context switches, you can pass TaskCont i nuati onOpti ons. Execut eSynchr onousl y as an additional argument to Cont i nueW
i t h. In this case, the behavior depends on the task's status: if the reply to the proxy invocation has already been received at the time Cont i nueWt h
is called, the continuation will be invoked by the current thread. If the reply has not yet been received, the continuation will be invoked by an Ice

thread pool thread.

@ If a dispatcher is configured, the Ice thread pool delegates the execution of the continuation to the dispatcher.

The scheduler that runs continuations can be changed by passing a custom scheduler to Cont i nueW t h. The Ice thread pool can be used as a task
scheduler, and you can obtain this scheduler by calling the i ce_schedul er proxy method and passing it to Cont i nueW t h. With the Ice thread
pool scheduler, the continuation is queued to be executed by the Ice thread pool. If you pass the option TaskCont i nuati onOpt i ons.

Execut eSynchronousl y to Cont i nueW t h, and the reply has been received at the time you call Cont i nueW t h, your thread will execute the
continuation. Therefore, if you want to ensure the continuation is always executed by an Ice thread pool thread (or indirectly the dispatcher, if one is
configured), you need to call Cont i nueW' t h:

® with proxy. i ce_schedul er () as your task scheduler
® without TaskCont i nuat i onOpt i ons. Execut eSynchr onousl y as continuation option (or, alternatively, override this option with TaskCo
nti nuationOptions. RunConti nuati onsAsynchronousl y)

When using async and awai t , the concurrency semantics are determined by the synchronization context in which you're making the proxy
invocation. For example, awaiting an asynchronous proxy invocation from the main thread will invoke the continuation from a .NET thread pool
thread. Similarly, awaiting an asynchronous proxy invocation from the GUI thread in a graphical application will invoke the continuation from the GUI
thread.

Ice configures a synchronization context for its own thread pool threads, so if you happen to await an asynchronous proxy invocation while in an Ice
thread pool thread, the continuation will also be invoked by an Ice thread.

Refer to the flow control discussion for information about the concurrency semantics of the sent callback.

See Also
® Request Contexts

® Batched Invocations
® Collocated Invocation and Dispatch

Copyright 2018, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Request+Contexts
https://doc.zeroc.com/display/Ice37/Batched+Invocations
https://doc.zeroc.com/display/Ice37/Collocated+Invocation+and+Dispatch
https://doc.zeroc.com/display/Ice37/Dispatching+Requests+to+User+Threads

	AMI in C-Sharp with Tasks

