
Writing an Ice Application with C++ (C++98)

This page shows how to create an Ice application with C++ using the Ice C++98 mapping.

On this page:

Compiling a Slice Definition for C++
Writing and Compiling a Server in C++
Writing and Compiling a Client in C++
Running Client and Server in C++

Compiling a Slice Definition for C++
The first step in creating our C++ application is to compile our to generate C++ proxies and skeletons. You can compile the definition as Slice definition
follows:

$ slice2cpp Printer.ice

The compiler produces two C++ source files from this definition, and .slice2cpp Printer.h Printer.cpp

Printer.h
The header file contains C++ type definitions that correspond to the Slice definitions for our interface. This header file must Printer.h Printer
be included in both the client and the server source code.

Printer.cpp
The file contains the source code for our interface. The generated source contains type-specific run-time support for Printer.cpp Printer
both clients and servers. For example, it contains code that marshals parameter data (the string passed to the operation) on the printString
client side and unmarshals that data on the server side.
The file must be compiled and linked into both client and server.Printer.cpp

Back to Top ^

Writing and Compiling a Server in C++
The source code for the server takes only a few lines and is shown in full here:

https://doc.zeroc.com/pages/viewpage.action?pageId=18262522
https://doc.zeroc.com/display/IceMatlab/Writing+an+Ice+Application+with+C-Sharp
https://doc.zeroc.com/display/IceMatlab/Writing+a+Slice+Definition

C++

#include <Ice/Ice.h>
#include <Printer.h>

using namespace std;
using namespace Demo;

class PrinterI : public Printer
{
public:
 virtual void printString(const string& s, const Ice::Current&);
};

void
PrinterI::
printString(const string& s, const Ice::Current&)
{
 cout << s << endl;
}

int
main(int argc, char* argv[])
{
 try
 {
 Ice::CommunicatorHolder ich(argc, argv);
 Ice::ObjectAdapterPtr adapter =
 ich->createObjectAdapterWithEndpoints("SimplePrinterAdapter", "default -p 10000");
 Ice::ObjectPtr object = new PrinterI;
 adapter->add(object, ic->stringToIdentity("SimplePrinter"));
 adapter->activate();
 ich->waitForShutdown();
 }
 catch(const std::exception& e)
 {
 cerr << e.what() << endl;
 return 1;
 }
 return 0;
}

There appears to be a lot of code here for something as simple as a server that just prints a string. Do not be concerned by this: most of the preceding
code is boiler plate that never changes. For this very simple server, the code is dominated by this boiler plate.

Every Ice source file starts with an include directive for , which contains the definitions for the Ice run time. We also include , which was Ice.h Printer.h
generated by the Slice compiler and contains the C++ definitions for our printer interface, and we import the contents of the and namespaces for std Demo
brevity in the code that follows:

C++

#include <Ice/Ice.h>
#include <Printer.h>

using namespace std;
using namespace Demo;

Our server implements a single printer servant, of type . Looking at the generated code in , we find the following (tidied up a little to PrinterI Printer.h
get rid of irrelevant detail):

C++

namespace Demo
{
 class Printer : virtual public Ice::Object
 {
 public:
 virtual void printString(const std::string&, const Ice::Current& = Ice::emptyCurrent) = 0;
 };
}

The skeleton class definition is generated by the Slice compiler. (Note that the method is pure virtual so the skeleton class cannot Printer printString
be instantiated.) Our servant class inherits from the skeleton class to provide an implementation of the pure virtual method. (By convention, printString
we use an -suffix to indicate that the class implements an interface.)I

C++

class PrinterI : public Printer
{
public:
 virtual void printString(const string& s, const Ice::Current&);
};

The implementation of the method is trivial: it simply writes its string argument to :printString stdout

C++

void
PrinterI::printString(const string& s, const Ice::Current&)
{
 cout << s << endl;
}

Note that has a second parameter of type . As you can see from the definition of , the Slice printString Ice::Current Printer::printString
compiler generates a default argument for this parameter, so we can leave it unused in our implementation. (We will examine the purpose of the Ice::

 parameter later.)Current

What follows is the server main program. Note the general structure of the code:

C++

int
main(int argc, char* argv[])
{
 try
 {
 Ice::CommunicatorHolder ich(argc, argv);
 // Server implementation here...
 }
 catch(const std::exception& e)
 {
 cerr << e.what() << endl;
 return 1;
 }
 return 0;
}

The body of contains a try/catch block, and we start by creating an Ice Communicator holder on the stack. We pass and to the main argc argv Communi
 because the server may have command-line arguments that are of interest to the run time; for this example, the server does not require catorHolder

any command-line arguments. is a a -helper class, which creates and holds an object. The primary CommunicatorHolder RAII Ice::Communicator
purpose of this holder object is to call on the communicator when the holder goes out of scope.destroy

https://doc.zeroc.com/display/IceMatlab/The+Current+Object
https://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization

1.

2.
3.

4.

5.

Next, we have the actual server code:

C++

 Ice::ObjectAdapterPtr adapter =
 ich->createObjectAdapterWithEndpoints("SimplePrinterAdapter", "default -p 10000");
 Ice::ObjectPtr object = new PrinterI;
 adapter->add(object, ich->stringToIdentity("SimplePrinter"));
 adapter->activate();
 ich->waitForShutdown();

The code goes through the following steps:

We create an object adapter by calling on the instance (through createObjectAdapterWithEndpoints Communicator CommunicatorHol
s overloaded . The arguments we pass are (which is the name of the adapter) and der' operator->()) "SimplePrinterAdapter" "defaul

, which instructs the adapter to listen for incoming requests using the default protocol (TCP/IP) at port number 10000.t -p 10000"
At this point, the server-side run time is initialized and we create a servant for our interface by instantiating a object.Printer PrinterI
We inform the object adapter of the presence of a new servant by calling on the adapter; the arguments to are the servant we have just add add
instantiated, plus an identifier. In this case, the string is the name of the Ice object. (If we had multiple printers, each would "SimplePrinter"
have a different name or, more correctly, a different .)object identity
Next, we activate the adapter by calling its method. (The adapter is initially created in a holding state; this is useful if we have many activate
servants that share the same adapter and do not want requests to be processed until after all the servants have been instantiated.) The server
starts to process incoming requests from clients as soon as the adapter is activated.
Finally, we call . This call suspends the calling thread until the server implementation terminates, either by making a call to waitForShutdown
shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the same for all servers. You can put that code into a helper class and,
thereafter, will not have to bother with it again. (Ice provides such a helper class, called .) As far as actual application code is Ice::Application
concerned, the server contains only a few lines: six lines for the definition of the class, plus three lines to instantiate a object and PrinterI PrinterI
register it with the object adapter.

Assuming that we have the server code in a file called , we can compile it as follows:Server.cpp

$ c++ -I. -c Printer.cpp Server.cpp

This compiles both our application code and the code that was generated by the Slice compiler. Depending on your platform, you may have to add
additional include directives or other options to the compiler; please see the demo programs that ship with Ice for the details.

Finally, we need to link the server into an executable:

$ c++ -o server Printer.o Server.o -lIce

Again, depending on the platform, the actual list of libraries you need to link against may be longer. The demo programs that ship with Ice contain all the
detail.

Back to Top ^

Writing and Compiling a Client in C++
The client code looks very similar to the server. Here it is in full:

Failure to call on the communicator before the program exits results in undefined behavior.destroy

https://doc.zeroc.com/display/IceMatlab/Application+Helper+Class

1.
2.

3.

4.
5.

C++

#include <Ice/Ice.h>
#include <Printer.h>

using namespace std;
using namespace Demo;

int
main(int argc, char* argv[])
{
 try
 {
 Ice::CommunicatorHolder ich(argc, argv);
 Ice::ObjectPrx base = ich->stringToProxy("SimplePrinter:default -p 10000");
 PrinterPrx printer = PrinterPrx::checkedCast(base);
 if(!printer)
 {
 throw "Invalid proxy";
 }
 printer->printString("Hello World!");
 }
 catch(const std::exception& ex)
 {
 cerr << ex.what() << endl;
 return 1;
 }
 return 0;
}

Note that the overall code layout is the same as for the server: we include the headers for the Ice run time and the header generated by the Slice compiler,
and we use the same block and handlers to deal with errors.try catch

The code in the block does the following:try

As for the server, we initialize the Ice run time by creating a .Ice::CommunicatorHolder
The next step is to obtain a proxy for the remote printer. We create a proxy by calling on the communicator, with the string stringToProxy "Sim

. Note that the string contains the object identity and the port number that were used by the server. plePrinter:default -p 10000"
(Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for now; we will see more
architecturally sound ways of doing this when we discuss .)IceGrid
The proxy returned by is of type , which is at the root of the inheritance tree for interfaces and classes. But to stringToProxy Ice::ObjectPrx
actually talk to our printer, we need a proxy for a interface, not an interface. To do this, we need to do a down-cast by calling Printer Object Pr

. A checked cast sends a message to the server, effectively asking "is this a proxy for a interface?" If so, interPrx::checkedCast Printer
the call returns a proxy to a ; otherwise, if the proxy denotes an interface of some other type, the call returns a null proxy.Printer
We test that the down-cast succeeded and, if not, throw an error message that terminates the client.
We now have a live proxy in our address space and can call the method, passing it the time-honored string. printString "Hello World!"
The server prints that string on its terminal.

Compiling and linking the client looks much the same as for the server:

$ c++ -I. -I$ICE_HOME/include -c Printer.cpp Client.cpp
$ c++ -o client Printer.o Client.o -lIce

Back to Top ^

Running Client and Server in C++
To run client and server, we first start the server in a separate window:

$./server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

https://doc.zeroc.com/display/IceMatlab/IceGrid

$./client
$

The client runs and exits without producing any output; however, in the server window, we see the that is produced by the printer. To "Hello World!"
get rid of the server, we interrupt it on the command line for now. (We will see cleaner ways to terminate a server in our discussion of .)Ice::Application

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get:

Network.cpp:471: Ice::ConnectFailedException:
connect failed: Connection refused

Back to Top ^

See Also

Client-Side Slice-to-C++98 Mapping
Server-Side Slice-to-C++98 Mapping
Application Helper Class
The Current Object
IceGrid

https://doc.zeroc.com/display/IceMatlab/Application+Helper+Class
https://doc.zeroc.com/pages/viewpage.action?pageId=18262661
https://doc.zeroc.com/pages/viewpage.action?pageId=18262693
https://doc.zeroc.com/display/IceMatlab/Application+Helper+Class
https://doc.zeroc.com/display/IceMatlab/The+Current+Object
https://doc.zeroc.com/display/IceMatlab/IceGrid
https://doc.zeroc.com/pages/viewpage.action?pageId=18262522
https://doc.zeroc.com/display/IceMatlab/Writing+an+Ice+Application+with+C-Sharp

	Writing an Ice Application with C++ (C++98)

